For many materials processing techniques, the meniscus of liquid bridging the crystal to the melt is critical in determining the properties of the solidified crystal. It is standard practice for existing theoretical models to use equilibrium meniscus shapes with specified contact angle to represent the behavior of the meniscus. It is shown here that with such boundary conditions, multiple solutions exist to the axisymmetric form of the Laplace–Young equation. Furthermore, these possible meniscus profiles may, depending on the interaction of Bond number, pressurization, aspect ratio and contact angle, correspond to minima, maxima or nonextrema points, as far as energy is concerned. The implications of this observation on meniscus stability are explored. The effect of direction of pulling in relation to gravity is also investigated. It appears that for tall menisci, commonly adopted equilibrium shapes may be unstable and the consequent dynamic behavior must be considered. Quasiequilibrium dynamics of the meniscus is simulated using a simplified hysteresis model for the contact angle at the top of the meniscus. A variety of behavior is found to arise, which is not fully captured by relations governing meniscus behavior used hitherto in many theoretical simulations.

1.
C.
Huh
and
L. E.
Scriven
, “
Shapes of axisymmetric fluid interfaces of unbounded extent
,”
J. Colloid Interface Sci.
30
,
323
(
1960
).
2.
E.
Pitts
, “
The stability of a meniscus joining a vertical rod to a bath of liquid
,”
J. Fluid Mech.
76
,
641
(
1976
).
3.
K.
Katoh
,
H.
Fujita
, and
H.
Sasaki
, “
Macroscopic wetting behavior and a method for measuring contact angles
,”
J. Fluids Eng.
112
,
289
(
1990
).
4.
V. A.
Tatarchenko
and
E. A.
Brenner
, “
Crystallisation stability during capillary shaping, I and II
,”
J. Crystal Growth
50
,
33
(
1980
).
5.
T.
Surek
,
S. R.
Coriell
, and
B.
Chalmers
, “
The growth of shaped crystals from the melt
,”
J. Crystal Growth
50
,
21
(
1980
).
6.
D. H.
Michel
, “
Meniscus stability
,”
Annu. Rev. Fluid Mech.
13
,
189
(
1981
).
7.
P. D.
Thomas
,
H. M.
Ettouney
, and
R. A.
Brown
, “
A thermal-capillary mechanism for a growth rate limit in edge-defined film-fed growth rate limit silicon sheets
,”
J. Crystal Growth
76
,
339
(
1986
).
8.
D. G. Backmann, D. Wei, L. C. Filler, R. Irwin, and J. Collins, “Knowledge base control of solidification processes,” TMS Fall Meeting, Detroit, Michigan, 1990.
9.
E. B.
Dussan V.
, “
On the spreading of liquid on solid surfaces: static and dynamic contact lines
,”
Annu. Rev. Fluid Mech.
11
,
371
(
1979
).
10.
C. G.
Ngan
and
E. B.
Dussan V.
, “
On the nahlre of the dynamic contact angle: an experimental study
,”
J. Fluid Mech.
118
,
27
(
1982
).
11.
A. M.
Schwartz
and
S. B.
Tejada
, “
Studies of dynamic contact angles on solids
,”
J. Colloid Interface Sci.
38
,
359
(
1982
).
12.
P. G.
de Gennes
, “
Wetting: statics and dynamics
,”
Rev. Mod. Phys.
57
,
3
,
827
(
1985
).
13.
J.
Koplik
,
J.
Banavar
, and
J. F.
Willemsen
, “
Molecular dynamics of fluid flow at solid surfaces
,”
Phys. Fluids A
1
,
781
(
1989
).
14.
J. F.
Joanny
and
P. G.
de Gennes
, “
A model for contact angle hysteresis
,”
J. Chem. Phys.
81
,
552
(
1984
).
15.
K. M.
Jansons
, “
Moving contact lines at non-zero capillary numbers
,”
J. Fluid Mech.
167
,
393
(
1986
).
16.
R. Finn, Equilibrium Capillary Surfaces (Springer-Verlag, New York, 1986).
17.
C.
Huh
and
S. G.
Mason
, “
Effects of surface roughness on wetting
,”
J. Colloid Interface Sci.
60
,
11
(
1977
).
18.
A. V.
Neumann
and
R. J.
Good
, “
Thermodynamics of contact angles. I. Heterogeneous solid surfaces
,”
J. Colloid Interface Sci.
38
,
341
(
1972
).
19.
J. D.
Eick
,
R. J.
Good
, and
A. V.
Neumann
, “
Thermodynamics of contact angles. II. Rough solid surfaces
,”
J. Colloid Interface Sci.
53
,
235
(
1975
).
20.
J. F.
Oliver
,
C.
Huh
, and
S. G.
Mason
, “
Resistance to spreading of liquids by sharp edges
,”
J. Colloid Interface Sci.
59
,
568
(
1977
), and references therein.
21.
G. W.
Young
and
S. H.
Davis
, “
A plate oscillating across a liquid surface: effect of contact angle hysteresis
,”
J. Fluid Mech.
174
,
327
(
1987
).
22.
D. C.
Dyson
, “
The energy principle in the stability of interfaces
,”
Prog. Surf. Membr. Sci.
12
,
479
(
1978
).
23.
R. E.
Johnson
, “
Conflicts between Gibbsian thermodynamics and recent treatments of interfacial energies in solid-liquid-vapor systems
,”
J. Phys. Chem.
63
,
1655
(
1959
).
24.
P. J.
Haley
and
J. M.
Miskis
, “
The effect of the contact line on droplet spreading
,”
J. Fluid Mech.
223
,
57
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.