This article presents a theoretical study of the deformation of a spherical liquid droplet impinging upon a flat surface. The study accounts for the presence of surface tension during the spreading process. The theoretical model is solved numerically utilizing deforming finite elements and grid generation to simulate accurately the large deformations, as well as the domain nonuniformities characteristic of the spreading process. The results document the effects of impact velocity, droplet diameter, surface tension, and material properties on the fluid dynamics of the deforming droplet. Two liquids with markedly different thermophysical properties, water and liquid tin, are utilized in the numerical simulations because of their relevance in the industrial processes of spray cooling and spray deposition, respectively. The occurrence of droplet recoiling and mass accumulation around the splat periphery are standout features of the numerical simulations and yield a nonmonotonic dependence of the maximum splat radius on time.

1.
W. M.
Grissom
and
F. A.
Wierum
, “
Liquid spray cooling of a heated surface
,”
Int. J. Heat Mass Transfer
24
,
261
(
1981
).
2.
S.
Deb
and
S.-C.
Yao
, “
Analysis on film boiling heat transfer of impacting sprays
,”
Int. J. Heat Mass Transfer
32
,
2099
(
1989
).
3.
M.
Ghodbane
and
J. P.
Holman
, “
Experimental study of spray cooling with Freon-113
,”
Int. J. Heat Mass Transfer
34
,
1163
(
1991
).
4.
M. R.
Pais
,
L. C.
Chow
, and
E. T.
Mahefkey
, “
Surface roughness and its effects on the heat transfer mechanism in spray cooling
,”
J. Heat Transfer
114
,
211
(
1992
).
5.
D.
Apelian
, “
Perspective on process control in P/M
,”
Int. J. Powder Metall.
28
,
117
(
1992
).
6.
E.
Gutierrez-Miravete
,
E. J.
Lavernia
,
G. M.
Trapaga
,
J.
Szekely
, and
N. J.
Grant
, “
A mathematical model of the spray deposition process
,”
Metall. Trans. A
20
,
71
(
1989
).
7.
F. H.
Froes
,
C.
Suryanarayana
,
E.
Lavernia
, and
G. E.
Bobeck
, “
Innovations in light metals synthesis for the 1990s
,”
SAMPE Q.
22
,
11
(
1991
).
8.
G.
Trapaga
and
J.
Szekely
, “
Mathematical modeling of the isothermal impingement of liquid droplets in spray processes
,”
Metall. Trans. B
22
,
901
(
1991
).
9.
F. H.
Harlow
and
J. P.
Shannon
, “
The splash of a liquid droplet
,”
J. Appl. Phys.
38
,
3855
(
1967
).
10.
F. H.
Harlow
and
J. E. W.
Welch
, “
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
,”
Phys. Fluids
8
,
2182
(
1965
).
11.
C. S.
Frederiksen
and
A. M.
Watts
, “
Finite element method for time-dependent incompressible free surface flow
,”
J. Comput. Phys.
39
,
282
(
1981
).
12.
E. A. J. Fletcher, Computational Fluid Dynamics (Springer-Verlag, Berlin, 1988), Vol. II, pp. 333–345.
13.
H.
Jones
, “
Cooling, freezing, and substrate impact of droplets formed by rotary atomization
,”
J. Phys. D:
4
,
1657
(
1971
).
14.
J.
Madejski
, “
Solidification of droplets on a cold substrate
,”
Int. J. Heat Mass Transfer
19
,
1009
(
1976
).
15.
J.
Madejski
, “
Droplets on impact with a solid surface
,”
Int. J. Heat Mass Transfer
26
,
1095
(
1983
).
16.
FLOW-3D, Report No. FSI-88-00-1, Flow Science Inc., Los Alamos, NM, Vols. 1–4, 1988.
17.
K.
Tsurutani
,
M.
Yao
,
J.
Senda
, and
H.
Fujimoto
, “
Numerical analysis of the deformation process of a droplet impinging upon a wall
,”
JSME Intl. J. Ser. II
33
,
555
(
1990
).
18.
C.
Pozrikidis
, “
The deformation of a liquid drop moving normal to a plane wall
,”
J. Fluid Mech.
215
,
331
(
1990
).
19.
H. Jones, Rapid Solidification of Metals and Alloys (The Institution of Metallurgists, London, 1982).
20.
P.
Bach
and
O.
Hassager
, “
An algorithm for the use of the Lagrangian specification in Newtonian fluid mechanics and applications to free surface flow
,”
J. Fluid Mech.
152
,
173
(
1985
).
21.
C. W.
Hirt
and
B. D.
Nichols
, “
Adding limited compressibility to incompressible hydrocodes
,”
J. Comput. Phys.
34
,
390
(
1980
).
22.
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1991), Vol. 2, pp. 513–514.
23.
M.
Kawahara
and
H.
Hirano
, “
A finite element method for high Reynolds number viscous fluid flow using two step explicit scheme
,”
Int. J. Numer. Methods Fluids
3
,
137
(
1983
).
24.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, 1st ed. (Pergamon, Oxford, 1959), Vol. 6, p. 51.
25.
See Ref. 24, pp. 230–235.
26.
G.
Mejak
, “
Finite element analysis of axisymmetric free jet impingement
,”
Int. J. Numer. Methods Fluids
13
,
491
(
1991
).
27.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
28.
H. Lass, Vector and Tensor Analysis, 1st ed. (McGraw-Hill, New York, 1950), pp. 70–80.
29.
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1989), Vol. 1, pp. 206–215.
30.
P. J.
Haley
and
M. J.
Miksis
, “
The effect of the contact line on droplet spreading
,”
J. Fluid Mech.
223
,
57
(
1991
).
31.
E.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
(
1971
).
32.
E. B.
Dussan V.
and
S. H.
Davis
, “
On the motion of a fluid-fluid interface along a solid surface
,”
J. Fluid Mech.
65
,
71
(
1974
).
33.
E. B.
Dussan V.
, “
On the spreading of liquids on solid surfaces: Static and dynamic contact lines
,”
Annu. Rev. Fluid Mech.
11
,
371
(
1979
).
34.
W. J.
Silliman
and
L. E.
Scriven
, “
Separating flow near a static contact line: Slip at a wall and shape of a free surface
,”
J. Comput. Phys.
34
,
287
(
1980
).
35.
L. M.
Hocking
and
A. D.
Rivers
, “
The spreading of a drop by capillary action
,”
J. Fluid Mech.
121
,
425
(
1982
).
36.
P.
Sheng
and
M.
Zhou
, “
Immiscible-fluid displacement: Contact-line dynamics and the velocity-dependent capillary pressure
,”
Phys. Rev.
45
,
5694
(
1992
).
37.
L.
Leger
and
J. F.
Joanny
, “
Liquid spreading
,”
Rep. Prog. Phys.
,
431
(
1992
).
38.
S.
Chandra
and
C. T.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London Ser. A
432
,
13
(
1991
).
39.
R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles (Academic, New York, 1978), pp. 187–188.
This content is only available via PDF.
You do not currently have access to this content.