A multispeed discrete‐velocity molecular model of a rarefied gas is developed which permits quantitatively accurate simulation of mixtures of molecules of different mass which have both translational and internal rotational energies. In particular, the molecules are represented as having three discrete velocity components and a single discrete internal energy that does not directly affect the translational motion. During binary collisions, rotational and translational kinetic energies are exchanged according to a phenomenological model. Results are presented for the thermal relaxation to equilibrium of mixtures of H2 and Ne, N2 and O2, and N2 and CO2. Good agreement is found with the corresponding continuous‐velocity results.

1.
S. Chandrasekhar, Radiative Transfer (Dover, New York, 1980).
2.
J. J. Duderstadt and W. R. Martin, Transport Theory (Wiley, New York, 1979).
3.
E. P. Gross, “Recent investigations of the Boltzmann equation,” Rarefied Gas Dynamics: Proceedings of the First International Symposium, Nice (Pergamon, New York, 1960).
4.
J. E. Broadwell, “Study of rarefied shear flows by the discrete velocity method,” Space Technology Laboratories, Inc., Report No. 9813–6001-RU000, 1963.
5.
J. E.
Broadwell
, “
Study of rarefied shear flow by the discrete velocity method
,”
J. Fluid Mech.
19
,
401
(
1964
).
6.
J. E.
Broadwell
, “
Shock structure in a simple discrete velocity gas
,”
Phys. Fluids
7
,
1243
(
1964
).
7.
R. E.
Caflisch
and
G.
Papanicolaou
, “
The fluid dynamic limit of a nonlinear Boltzmann equation
,”
Comments Pure Appl. Math.
32
,
589
(
1979
).
8.
R. E.
Caflisch
, “
Navier-Stokes and Boltzmann shock profiles for a model of gas dynamics
,”
Comments Pure Appl. Math.
32
,
521
(
1979
).
9.
R. Gatignol, “Théorie cinétique des gaz à répartition discrète de vitesses,” in Lecture Notes in Physics (Springer-Verlag, Berlin, 1975), Vol. 36.
10.
T.
Platkowski
and
R.
Illner
, “
Discrete velocity models of the Boltzmann equation: A survey of the mathematical aspects of theory
,”
SIAM Rev.
30
,
213
(
1988
).
11.
G. R.
McNamera
and
G.
Zanetti
, “
Using the Boltzmann equation to simulate lattice gas automata
,”
Phys. Rev. Lett.
61
,
2332
(
1988
).
12.
T. Inamuro and B. Sturtevant, “Heat transfer in a discrete-velocity gas,” in Rarefied Gas Dynamics, Proceedings of 17th International Symposium on Rarefied Gas Dynamics, Aachen, edited by A. E. Beylich (VCH Verlagsgesellschaft, Weinheim, 1990).
13.
T.
Inamuro
and
B.
Sturtevant
, “
Numerical study of discrete-velocity gases
,”
Phys. Fluids A
2
,
2196
(
1990
).
14.
L. P.
Kadanoff
,
G.
McNamera
, and
G.
Zanetti
, “
From automata to fluid flow: Comparisons of simulation and theory
,”
Phys. Rev. A
40
,
4527
(
1989
).
15.
B. T. Nadiga, J. E. Broadwell, and B. Sturtevant, “Study of a multi-speed cellular automaton,” in Rarefied Gas Dynamics: Theoretical and Computational Techniques, Proceedings of 16th International Symposium on Rarefied Gas Dynamics, Pasadena, CA, edited by E. P. Muntz, D. P. Weaver, and D. H. Campbell (AIAA, Washington, DC, 1989);
Prog. Aeronaut. Astronaut.
118
,
155
(
1989
).
16.
L. N. Long, R. M. Coopersmith, and B. G. McLachlan, “Cellular automatons applied to gas dynamic problems,” presented at the AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Hawaii, 8–10 June 1987.
17.
G. Doolen (Editor), Lattice Gas Methods for Partial Differential Equations (Addison-Wesley, Reading, MA, 1990).
18.
D.
Dab
,
A.
Lawniczak
,
J.
Boon
, and
R.
Kapral
, “
Cellular-automaton model for reactive systems
,”
Phys. Rev. Lett.
64
,
2462
(
1990
).
19.
D. H.
Rothman
, “
Macroscopic laws for immiscible two-phase flow in porous media: Results from numerical experiments
,”
J. Geophys. Res. B
95
,
8663
(
1990
).
20.
G.
Zanetti
, “
The hydrodynamics of lattice gas automata
,”
Phys. Rev. A
40
,
1539
(
1989
).
21.
U.
Frisch
,
B.
Hasslacher
, and
Y.
Pomeau
, “
A lattice gas automaton for the Navier-Stokes equation
,”
Phys. Rev. Lett.
56
,
1505
(
1986
).
22.
S.
Chen
,
H.
Chen
, and
G. D.
Doolen
, “
How the lattice gas model for the Navier-Stokes equation improves when a new speed is added
,”
Complex Syst.
3
,
243
(
1989
).
23.
D. Goldstein, B. Sturtevant, and J. E. Broadwell, “Investigations of the motion of discrete-velocity gases,” in Ref. 15;
Prog. Aeronaut. Astronaut.
118
,
100
(
1989
).
24.
D. Goldstein and B. Sturtevant, “Discrete velocity gasdynamics simulations in a parallel processing environment,” presented at the Thermophysics Conference, Buffalo, NY, 12–14 June 1989; AIAA Paper No. AIAA-89–1668, 1989.
25.
D. Goldstein, “Investigations of a discrete velocity gas,” Ph.D. thesis, California Institute of Technology, 1990.
26.
D. Goldstein, “Near continuum applications of a discrete-velocity gas model,” in Ref. 12.
27.
G. A.
Bird
, “
The structure of normal shock waves in a binary gas mixture
,”
J. Fluid Mech.
31
,
657
(
1968
).
28.
C.
Borgnakke
and
P. S.
Larsen
, “
Statistical collision model for Monte Carlo simulation of polyatomic gas mixtures
,”
J. Comput. Phys.
18
,
405
(
1975
).
29.
G. A. Bird, “Monte-Carlo simulation in an engineering context,” Progress in Aeronautics and Astronautics, Twelfth International Symposium on Rarefied Gasdynamics, 7–11 July 1980 (AIAA, New York, 1981), pp. 239–255.
30.
A. Nordsieck and B. Hicks, “Monte Carlo evaluation of the Boltzmann collision integral,” in Rarefied Gas Dynamics, Proceedings of 5th Symposium on Rarefied Gas Dynamics, Oxford, England, edited by C, L. Brundin (Academic, New York, 1967), pp. 695–710.
31.
G. A. Bird, Molecular Gas Dynamics (Clarendon, Oxford, 1976).
32.
G. A.
Bird
, “
Definition of mean free path for real gases
,”
Phys. Fluids
26
,
3222
(
1983
).
33.
I. D.
Boyd
, “
Rotational-translational energy transfer in rarefied non-equilibrium flows
,”
Phys. Fluids A
2
,
447
(
1990
).
34.
D.
Erwin
,
G.
Phan-Van-Diep
, and
E. P.
Muntz
, “
Nonequilibrium gas flows. I: A detailed validation of Monte Carlo direct simulation for monatomic gases
,”
Phys. Fluids A
3
,
697
(
1991
).
35.
F. Bergemann, “Monte Carlo simulation of the hypersonic mon- and diatomic gas flow past a disk at an angle of attack,” in Ref. 12.
36.
T. Shimada, “Direct simulation of hypersonic rarefied flows about atmospheric reentry capsules,” in Ref. 12.
37.
A. E. Belikov, G. I. Sukhinin, and R. G. Sharafutdinov, “Rate constants for R-T relaxation of N2 in argon supersonic jets,” in Ref. 15;
Prog. Aeronaut. Astronaut.
117
,
52
(
1989
).
38.
G. A. Bird, “Direct simulation of typical AOTV entry flows,” presented at the AIAA/ASME 4th Joint Thermophysics and Heat Transfer Conference, Boston;
AIAA Paper No. AIAA-86–1310, 1986.
39.
G. A. Bird, “Simulation of multi-dimensional and chemically reacting flows,” in Rarefied Gas Dynamics, Proceedings of the 11th International Symposium on Rarefied Gas Dynamics, edited by R. Campargue, (CEA, Paris, 1979), Vol. 1.
This content is only available via PDF.
You do not currently have access to this content.