The characteristics of isenthalpic planar premixed flames in counterflowing streams involving high Reynolds numbers and either corotating or counter‐rotating swirl of large magnitudes are analyzed. The method of activation energy asymptotics is applied to a one‐step Arrhenius reaction with small departures from unity Lewis numbers. Density changes resulting from heat release are fully taken into account. High swirl is shown to lead to three stagnation points and regions of radial inflow in agreement with experiment. It is shown that the character of the viscous regions containing the flames and their extinction behavior are significantly influenced by swirl for strong rates of rotation. The present analysis shows that the resonances found in an earlier inviscid calculation are not physically realizable and accounts for the reversal of the lean flammability limit with rotation rate found experimentally.

1.
P. A.
Libby
,
G.
Sivashinsky
, and
F. A.
Williams
, “
Influences of swirl on the structure and extinction of strained premixed flames
,”
Phys. Fluids A
2
,
1213
(
1990
).
2.
Z. H.
Chen
,
G. E.
Liu
, and
S. H.
Sohrab
, “
Premixed flames in counterflow jets under rigid-body rotation
,”
Combust. Sci. Technol.
51
,
39
(
1987
).
3.
G. I.
Sivashinsky
and
S. H.
Sohrab
, “
The influence of rotation on premixed flames in stagnation point flow
,”
Combust. Sci. Technol.
53
,
67
(
1987
).
4.
Th.
von Kármán
, “
Uber Laminare und Turbulente Reibung
,”
Z. Angew. Math. Mech.
1
,
233
(
1921
).
5.
R. J.
Zandbergen
, and
D.
Dijkstra
, “
von Kármán swirling flows
,”
Annu. Rev. Fluid Mech.
19
,
465
(
1987
).
6.
H. K.
Kuiken
, “
The effect of normal blowing on the flow near a rotating disk of infinite extent
,”
J. Fluid Mech.
47
,
789
(
1971
).
7.
J. D.
Goddard
,
J. B.
Melville
, and
K.
Zhang
, “
Similarity solutions for stratified rotating disk flow
,”
J. Fluid Mech.
182
,
427
(
1987
).
8.
K.
Zhang
and
J. D.
Goddard
, “
Viscous interlayer structure and transport properties in von Kármán swirling flows
,”
Phys. Fluids A
1
,
132
(
1989
).
9.
W. J. Sheu, G. I. Sivashinsky, and S. H. Sohrab (private communication, 1990).
10.
M.
Holodniok
,
M.
Kubicek
, and
V.
Hlavacek
, “
Computation of the flow between two rotating coaxial disks: multiplicity of steady-state solutions
,”
J. Fluid Mech.
108
,
227
(
1981
).
11.
J. D. Buckmaster and G. S. S. Ludford, Theory of Laminar Flames (Cambridge U. P., Cambridge, 1982).
12.
P. A.
Libby
and
F. A.
Williams
, “
Strained premixed laminar flames under nonadiabatic conditions
,”
Combust. Sci. Technol.
31
,
1
(
1983
).
13.
P. A.
Libby
and
F. A.
Williams
, “
Structure of laminar flamelets in premixed turbulent flames
,”
Combust. Flame
44
,
287
(
1982
).
14.
P. A.
Libby
and
F. A.
Williams
, “
Strained premixed laminar flames with two reaction zones
,”
Combust. Sci. Technol.
37
,
221
(
1984
).
15.
P. A.
Libby
,
A.
Linan
, and
F. A.
Williams
, “
Strained premixed laminar flames with nonunity Lewis numbers
,”
Combust. Sci. Technol.
34
,
257
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.