A few remarks are made about the average dissipation of energy in unsteady turbulent flows, and the way in which it is modeled. Some suggestions are made that place the customary models on a more rational basis, and which lead to an improved model. Sample calculations with the improved model are presented. From time to time, philosophical comments are made about turbulence as a field, theoreticians, and other subjects.

1.
J. P. Richter, The Notebooks of Leonardo da Vinci (Dover, New York, 1970).
2.
J. T. C.
Liu
, “
Contributions to the understanding of large-scale coherent structures in developing free turbulent shear flows
,”
Adv. Appl. Mech.
26
,
183
(
1988
).
3.
H. W.
Liepmann
, “
Aspects of the turbulence problem
,”
Z. Angew. Math. Phys.
3
,
407
(
1952
).
4.
A. A. Townsend, The Structure of Turbulent Shear Flows (The University Press, Cambridge, UK, 1956).
5.
J. L. Lumley, “The structure of inhomogeneous turbulent flows,” in Atmospheric Turbulence and Radio Wave Propagation, edited by A. M. Yaglom and V. I. Tatarsky (Nauka, Moscow, 1967), p. 166.
6.
J. L. Lumley, “Comment 1 to Session One,” in Whither Turbulence? Turbulence at the Crossroads, Lecture Notes in Physics 357, edited by J. L. Lumley (Springer-Verlag, Berlin, 1990), p. 49.
7.
N.
Aubry
,
P.
Holmes
,
J. L.
Lumley
, and
E.
Stone
, “
The dynamics of coherent structures in the wall region of a turbulent boundary layer
,”
J. Fluid Mech.
192
,
115
(
1988
).
8.
N.
Aubry
,
J. L.
Lumley
, and
P.
Holmes
, “
The effect of modeled drag reduction on the wall region
,”
Theor. Comput. Fluid Dyn.
1
,
229
(
1990
).
9.
A.
Poje
and
J. L.
Lumley
, “
Analytic extraction of coherent structures
,”
Bull. Am. Phys. Soc.
35
,
2315
(
1990
).
10.
A. J.
Bloch
and
J.
Marsden
, “
Controlling homoclinic orbits
,”
Theor. Comput. Fluid Dyn.
1
,
179
(
1989
).
11.
S. B. Pope (private communication, 1990).
12.
H. Leipmann (private communication, 1990).
13.
T. A.
Heppenheimer
, “
Some tractable mathematics for some intractable physics
,”
Mosaic
22
,
28
(
1991
).
14.
J. Boussinesq, Theorie de l’écoulement Tourbillant, Mem. Pré. Par. Div. Sav. (Acad. Sci., Paris, 1877), Vol. XXIII.
15.
B. E.
Launder
,
G. J.
Reece
, and
W.
Rodi
, “
Progress in the development of a Reynolds stress turbulence closure
,”
J. Fluid Mech.
68
,
537
(
1975
).
16.
A. N.
Kolmogorov
, “
Local structure of turbulence in an incompressible fluid at very high Reynolds numbers
,”
Dokl. AN SSSR
30
,
299
(
1941
).
17.
P. G. Saffman, Topics in Nonlinear Physics, edited by N. Zabusky (Springer-Verlag, Berlin, 1968), Chap. 6.
18.
P. G. Saffman, “Round table discussion,” in Global Geometry of Turbulence, edited by J. Jiménez (Springer-Verlag, Berlin, in press).
19.
G. K. Batchelor, Homogeneous Turbulence (The University Press, Cambridge, UK, 1956).
20.
K. R.
Sreenivasan
, “
On the scaling of the turbulence energy dissipation rate
,”
Phys. Fluids
27
,
1048
(
1984
).
21.
J. L. Lumley and H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience, New York, 1964).
22.
H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, MA, 1972), p. 260.
23.
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, edited by J. L. Lumley (MIT Press, Cambridge, MA, 1975), Vol. 2.
24.
See Ref. 22, p. 279.
25.
P. K. Yeung and J. G. Brasseur, “The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales,” submitted to Phys. Fluids A.
26.
See Ref. 22, p. 86.
27.
J. L. Lumley, “Computational modeling of turbulent flows,” in Advances in Applied Mechanics, edited by C. S. Yih (Academic, New York, 1978), Vol. 18, p. 123.
28.
See Ref. 22, p. 259.
29.
See Ref. 22, p. 259.
30.
L. Zubair, K. R. Sreenivasan, and V. Wickerhauser, “Characterization and compression of turbulent signals and images using wavelet-packets,” in The Lumley Symposium: Recent Developments in Turbulence, edited by T. Gatski, S. Sarkar, and C. G. Speziale (Springer-Verlag, Berlin, in press).
31.
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, edited by J. L. Lumley (MIT Press, Cambridge, MA, 1971), Vol. 1.
32.
See Ref. 22, p. 260.
33.
See Ref. 22, p. 261.
34.
J. A. Domaradzki, R. S. Rogallo, and A. A. Wray, “Interscale energy transfer in numerically simulated homogeneous turbulence,” Proceedings of the CTR Summer Program (Stanford, Palo Alto, CA, 1990).
35.
See Ref. 22, p. 260.
36.
S. Corrsin (private communication, 1975).
37.
G.
Comte-Bellot
and
S.
Corrsin
, “
The use of a contraction to improve the isotropy of grid-generated turbulence
,”
J. Fluid Mech.
25
,
657
(
1966
).
38.
F. H.
Champagne
,
V. G.
Harris
and
S.
Corrsin
, “
Experiments on nearly homogeneous turbulent shear flow
,”
J. Fluid Mech.
41
,
81
(
1970
).
39.
V. G.
Harris
,
J. A.
Graham
, and
S.
Corrsin
, “
Further experiments in nearly homogeneous turbulent shear flow
,”
J. Fluid Mech.
81
,
657
(
1977
).
40.
K.
Singh
and
J. L.
Lumley
, “
Extension of Heisenberg’s model for spectral transfer to second-order fluids in turbulent flow
,”
Appl. Sci. Res. A
24
,
187
(
1971
).
41.
A. M.
Obukhov
, “
Energy distribution in the spectrum of a turbulent flow
,”
Izv. AN SSSR, Ser. Geogr. Geofiz.
4–5
,
453
(
1941
).
42.
H. L.
Grant
,
R. W.
Stewart
, and
A.
Moilliet
, “
Turbulence spectra from a tidal channel
,”
J. Fluid Mech.
12
,
241
(
1962
).
This content is only available via PDF.
You do not currently have access to this content.