We obtain the analytic adjoint solution for two-dimensional incompressible potential flow for a cost function measuring aerodynamic force using the connection of the adjoint approach to Green's functions and also by establishing and exploiting its relation to the adjoint incompressible Euler equations. By comparison with the analytic solution, it is shown that the naïve approach based on solving Laplace's equation for the adjoint variables can be ill-defined. The analysis of the boundary behavior of the analytic solution is used to discuss the proper formulation of the adjoint problem as well as the mechanism for incorporating the Kutta condition in the adjoint formulation.

1.
O.
Pironneau
, “
On optimum design in fluid mechanics
,”
J. Fluid Mech.
64
,
97
110
(
1974
).
2.
D. G.
Cacucci
, “
Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach
,”
J. Math. Phys
22
,
2794
2802
(
1981
).
3.
A.
Jameson
, “
Aerodynamic design via control theory
,”
J. Sci. Comput.
3
(
3
),
233
260
(
1988
).
4.
F.
Angrand
, “
Optimum design for potential flows
,”
Int. J. Numer. Methods Fluids
3
,
265
282
(
1983
).
5.
J.
Reuther
and
A.
Jameson
, “
Control theory based airfoil design for potential flow and a finite volume discretization
,” AIAA Paper No. 94-0499,
1994
.
6.
J.
Reuther
, “
Aerodynamic shape optimization using control theory
,” Ph.D. thesis (
University of California Davis
,
1996
).
7.
L. C. C.
Santos
, “
An adjoint formulation for the non-linear potential flow equation
,”
Appl. Math. Comput.
108
(
1
),
11
21
(
2000
).
8.
J.
Lewis
and
R.
Agarwal
, “
Airfoil design via control theory using full potential and Euler equations
,” AIAA Paper No. 96-2483,
1996
.
9.
G.
Kuruvila
,
S.
Ta'asan
, and
M.
Salas
, “
Airfoil design and optimization by the one-shot method
,” AIAA Paper No. 95-0478,
1995
.
10.
A.
Crovato
,
A. P.
Prado
,
P. H.
Cabral
,
R.
Boman
,
V. E.
Terrapon
, and
G.
Dimitriadis
, “
A discrete adjoint full potential formulation for fast aerostructural optimization in preliminary aircraft design
,”
Aerosp. Sci. Technol.
138
,
108332
(
2023
).
11.
M.
Galbraith
,
S.
Allmaras
, and
R.
Haimes
, “
Full potential revisited: A medium fidelity aerodynamic analysis tool
,” AIAA Paper No. 2017-0290,
2017
.
12.
D.
Anevlavi
and
K.
Belibassakis
, “
An adjoint optimization prediction method for partially cavitating hydrofoils
,”
J. Mar. Sci. Eng.
9
(
9
),
976
(
2021
).
13.
N. A.
Pierce
and
M. B.
Giles
, “
Adjoint and defect error bounding and correction for functional estimates
,”
J. Comput. Phys.
200
(
2
),
769
794
(
2004
).
14.
R. A.
Meric
and
A. R.
Cete
, “
An optimization approach for stream function solution of potential flows around immersed bodies
,”
Commun. Numer. Methods Eng.
14
,
253
269
(
1998
).
15.
C.
Lozano
and
J.
Ponsin
, “
Analytic adjoint solutions for the 2D incompressible Euler equations using the Green's function approach
,”
J. Fluid Mech.
943
,
A22
(
2022
).
16.
M. B.
Giles
and
N. A.
Pierce
, “
Analytic adjoint solutions for the quasi-one-dimensional Euler equations
,”
J. Fluid Mech.
426
,
327
345
(
2001
).
17.
C.
Lozano
, “
Singular and discontinuous solutions of the adjoint Euler equations
,”
AIAA J.
56
(
11
),
4437
4452
(
2018
).
18.
K. J.
Fidkowski
and
P. L.
Roe
, “
An entropy adjoint approach to mesh refinement
,”
SIAM J. Sci. Comput.
32
(
3
),
1261
1287
(
2010
).
19.
C.
Lozano
, “
Entropy and adjoint methods
,”
J. Sci. Comput.
81
,
2447
2483
(
2019
).
20.
C.
Lozano
and
J.
Ponsin
, “
Exact inviscid drag-adjoint solution for subcritical flows
,”
AIAA J.
59
(
12
),
5369
5373
(
2021
).
21.
C.
Lozano
and
J.
Ponsin
, “
Explaining the lack of mesh convergence of inviscid adjoint solutions near solid walls for subcritical flows
,”
Aerospace
10
(
5
),
392
(
2023
).
22.
N.
Kühl
,
P. M.
Müller
, and
T.
Rung
, “
Continuous adjoint complement to the Blasius equation
,”
Phys. Fluids
33
,
033608
(
2021
).
23.
N.
Kühl
,
P.
Müller
, and
T.
Rung
, “
Adjoint complement to the universal momentum law of the wall
,”
Flow, Turbul. Combust.
108
,
329
351
(
2022
).
24.
J.
Hicken
and
D.
Zingg
, “
Dual consistency and functional accuracy: A finite-difference perspective
,”
J. Comput. Phys.
256
,
161
182
(
2014
).
25.
Y.
Marichal
,
P.
Chatelain
, and
G.
Winckelmans
, “
An immersed interface solver for the 2-D unbounded Poisson equation and its application to potential flow
,”
Comput. Fluids
96
,
76
86
(
2014
).
26.
P.
Bassanini
,
C.
Casciola
,
M.
Lancia
, and
R.
Piva
, “
Edge singularities and Kutta condition in 3D aerodynamics
,”
Meccanica
34
,
199
229
(
1999
).
27.
M. B.
Giles
and
N. A.
Pierce
, “
Adjoint equations in CFD: Duality, boundary conditions and solution behavior
,” AIAA Paper No. 97-1850,
1997
.
28.
L. M.
Milne-Thomson
,
Theoretical Hydrodymanics
, 4th ed. (
MacMillan & Co
,
London, UK
,
1962
).
29.
J.
Conway
,
Functions of One Complex Variable
, 2nd ed. (
Springer
,
New York
,
1978
).
30.
J.
Katz
and
A.
Plotkin
,
Low Speed Aerodynamics
, 2nd ed. (
Cambridge University Press
,
New York
,
2001
).
You do not currently have access to this content.