The creep of rock is the result of the evolution of its internal hardening effect and damage effect. Based on the modeling idea of the classical element model, the initial yield strength of rock is taken as the stress threshold of creep hardening. The long-term strength of rock is used as the stress threshold of damage softening. The hardening function that can reflect the hardening effect of rock and the damage variable that can reflect the damage effect are introduced. The results show that the established nonlinear creep model of rock is in good agreement with the creep test results. This shows the correctness of the rock creep model. At the same time, it can fully reflect the creep hardening and damage softening mechanism of the whole process of rock creep. The model can not only describe the existing salt rock creep test, but also provide a theoretical basis for the prediction of creep deformation under other stress states. The model curve established in this paper can better describe the creep curve with accelerated creep than the original model and the test curve. It can also accurately captures the variation of decay creep and stable creep. The model effectively captures the coupled effects of hardening and damage.

1.
Bouras
,
Y.
,
Zorica
,
D.
,
Atanacković
,
T. M.
, and
Vrcelj
,
Z.
, “
A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete
,”
Appl. Math. Model.
55
,
551
568
(
2018
).
2.
Chen
,
W.
, “
Fractal analysis of Hausdorff calculus and fractional calculus models
,”
Comput. Aided Eng.
26
(
3
),
1
5
(
2017
) (in Chinese).
3.
Cheng
,
A. P.
,
Fu
,
Z. X.
, and
Liu
,
L. S.
, “
Creep hardening-damage characteristics and nonlinear constitutive model of cemented backfill
,”
J. Min. Saf. Eng.
39
(
3
),
449
457
(
2022
) (in Chinese).
4.
Dong
,
Z.
,
Li
,
Y.
,
Li
,
H.
,
Shi
,
X.
,
Ma
,
H.
,
Zhao
,
K.
,
Liu
,
Y.
,
He
,
T.
,
Xia
,
D.
, and
Zhao
,
A.
, “
Influence of loading history on creep behavior of rock salt
,”
J. Energy Storage
55
,
105434
(
2022
).
5.
Feng
,
Y. Y.
,
Yang
,
X. J.
,
Liu
,
J. G.
, and
Chen
,
Z. Q.
, “
A new fractional Nishihara-type model with creep damage considering thermal effect
,”
Eng. Fract. Mech.
242
,
107451
(
2021
).
6.
Gutiérrez-Ch
,
J. G.
,
Senent
,
S.
,
Graterol
,
E. P.
,
Zeng
,
P.
, and
Jimenez
,
R.
, “
Rock shear creep modeling: DEM–Rate process theory approach
,”
Int. J. Rock Mech. Min. Sci.
161
,
105295
(
2023
).
7.
Jiang
,
Z.
and
Wang
,
H.
, “
Study on shear creep characteristics and creep model of soil-rock mixture considering the influence of water content
,”
Front. Phys.
10
, 819709 (
2022
).
8.
Jin
,
A.
,
Wang
,
B.
,
Zhao
,
Y.
,
Wang
,
H.
,
Feng
,
H.
,
Sun
,
H.
, and
Yang
,
Z.
, “
Analysis of the deformation and fracture of underground mine roadway by joint rock mass numerical model
,”
Arab. J. Geosci.
12
,
559
(
2019
).
9.
Kou
,
H.
,
He
,
C.
,
Yang
,
W.
,
Wu
,
F.
,
Zhou
,
Z.
,
Fu
,
J.
, and
Xiao
,
L.
, “
A fractional nonlinear creep damage model for transversely isotropic rock
,”
Rock Rock Mech. Rock Eng.
56
(
2
),
831
846
(
2023
).
10.
Li
,
Z.
,
Yang
,
G.
,
Wei
,
Y.
, and
Shen
,
Y.
, “
Construction of nonlinear creep damage model of frozen sandstone based on fractional-order theory
,”
Cold Reg. Sci. Technol.
196
,
103517
(
2022
).
11.
Liu
,
H. Z.
,
Xie
,
H. Q.
,
He
,
J. D.
,
Xiao
,
M. L.
, and
Zhuo
,
L.
, “
Nonlinear creep damage constitutive model for soft rocks
,”
Mech. Time-Depend. Mater.
21
,
73
96
(
2017
).
12.
Liu
,
W.
,
Zhou
,
H.
,
Zhang
,
S.
,
Jiang
,
S.
, and
Yang
,
L.
, “
A nonlinear creep model for surrounding rocks of tunnels based on kinetic energy theorem
,”
J. Rock Mech. Geotech. Eng.
15
(
2
),
363
374
(
2023
).
13.
Ma
,
S.
and
Gutierrez
,
M.
, “
A time-dependent creep model for rock based on damage mechanics
,”
Environ. Earth Sci.
79
(
19
),
466
(
2020
).
14.
Pan
,
X.
,
Berto
,
F.
, and
Zhou
,
X.
, “
Creep mechanical characteristics and nonlinear viscoelastic-plastic creep model of sandstone after high-temperature heat treatment
,”
Fatigue Fract. Eng. Mater. Struct.
46
,
2982
(
2023
).
15.
Qiao
,
L.
,
Wang
,
Z.
,
Liu
,
J.
, and
Li
,
W.
, “
Internal state variable creep constitutive model for the rock creep behavior
,”
Bull. Eng. Geol. Environ.
81
(
11
),
456
(
2022
).
16.
Qin
,
Z.
,
Liu
,
Y.
,
Pang
,
W.
,
Han
,
J.
,
Liu
,
W.
, and
Feng
,
Q.
, “
A creep damage model for yellow sandstone under the action of wetting-drying cycles
,”
Mech. Time-Depend. Mater.
28
,
207
219
(
2024
).
17.
Ru
,
W.
,
Hu
,
S.
,
Zhou
,
A.
,
Luo
,
P.
,
Gong
,
H.
,
Zhang
,
C.
, and
Zhou
,
X.
, “
Study on creep characteristics and nonlinear fractional-order damage constitutive model of weakly cemented soft rock
,”
Rock Mech. Rock Eng.
56
,
8061
8082
(
2023
).
18.
Shen
,
M. R.
and
Chen
,
H. J.
, “
Testing study of long-term strength characteristics of red sandstone
,”
Rock Soil Mech.
32
(
11
),
3301
3305
(
2011
).
19.
Song
,
Y. J.
,
Lei
,
S. Y.
, and
Liu
,
X. K.
, “
Non-linear rock creep model based on hardening and damage effect
,”
J. China Coal Soc.
37
(
S2
),
287
292
(
2012
).
20.
Tang
,
H.
,
Wang
,
D.
,
Huang
,
R.
,
Pei
,
X.
, and
Chen
,
W.
, “
A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics
,”
Bull. Eng. Geol. Environ.
77
,
375
383
(
2018
).
21.
Tian
,
Y.
,
Wu
,
F. Q.
,
Tian
,
H. M.
,
Li
,
Z.
,
Shu
,
X. Y.
,
He
,
L. K.
,
Huang
,
M.
, and
Chen
,
W. Z.
, “
Anisotropic creep behavior of soft-hard interbedded rock masses based on 3D printing and digital imaging correlation technology
,”
J. Mt. Sci.
20
,
1147
(
2023
).
22.
Wang
,
J.
,
Zhang
,
Q.
,
Song
,
Z.
,
Feng
,
S.
, and
Zhang
,
Y.
, “
Nonlinear creep model of salt rock used for displacement prediction of salt cavern gas storage
,”
J. Energy Storage
48
,
103951
(
2022
).
23.
Wu
,
F.
,
Zhou
,
X.
,
Ying
,
P.
,
Li
,
C.
,
Zhu
,
Z.
, and
Chen
,
J.
, “
A study of uniaxial acoustic emission creep of salt rock based on improved fractional-order derivative
,”
Rock Mech. Rock Eng.
55
(
3
),
1619
1631
(
2022
).
24.
Yan
,
B.
,
Guo
,
Q.
,
Ren
,
F.
, and
Cai
,
M.
, “
Modified Nishihara model and experimental verification of deep rock mass under the water-rock interaction
,”
Int. J. Rock Mech. Min. Sci.
128
,
104250
(
2020
).
25.
Yang
,
Z.
,
Zhu
,
W.
,
Guan
,
K.
,
Yan
,
B.
, and
Jia
,
H.
, “
Influence of dynamic disturbance on rock creep from time, space, and energy aspects
,”
Geomat. Nat. Hazards Risk
13
(
1
),
1065
1086
(
2022
).
26.
Yu
,
H.
,
Chen
,
W.
,
Ma
,
Y.
,
Tan
,
X.
, and
Yang
,
J.
, “
Experimental and theoretical study on the creep behavior of a clayey rock
,”
Rock Mech. Rock Eng.
56
(
2
),
1387
1398
(
2023a
).
27.
Yu
,
S.
,
Ren
,
X.
,
Zhang
,
J.
, and
Sun
,
Z.
, “
Numerical simulation of the excavation damage of Jinping deep tunnels based on the SPH method
,”
Geomech. Geophys. Geo-Energy Geo-Resour.
9
(
1
),
1
(
2023b
).
28.
Zhang
,
Q. G.
,
Liang
,
Y. C.
,
Fan
,
X. Y.
,
Li
,
G. Z.
,
Li
,
W. T.
,
Yang
,
B. Z.
, and
Tong
,
M. A.
, “
Modified Nishihara model based on the law of the conservation of energy and experimental verification
,”
J. Chongqing Univ.
39
(
3
),
117
124
(
2016
) (in Chinese).
29.
Zhang
,
L.
,
Zhou
,
H.
,
Wang
,
X.
,
Wang
,
L.
,
Su
,
T.
,
Wei
,
Q.
, and
Deng
,
T.
, “
A triaxial creep model for deep coal considering temperature effect based on fractional derivative
,”
Acta Geotech.
17
,
1739
1751
(
2022
).
30.
Zhao
,
K.
,
Yang
,
C.
,
Ma
,
H.
, and
Daemen
,
J. J. K.
, “
A creep-fatigue model of rock salt and its application to the deformation analysis of CAES salt caverns
,”
Comput. Geotech.
156
,
105311
(
2023
).
31.
Zhou
,
X.
,
Pan
,
X.
, and
Berto
,
F.
, “
A state-of-the-art review on creep damage mechanics of rocks
,”
Fatigue Fract. Eng. Mater. Struct.
45
(
3
),
627
652
(
2022
).
You do not currently have access to this content.