To efficiently evaluate the separation scale in compressor cascades, this study introduces an end-to-end model, the physics-enhanced Fourier neural operator (PE-FNO), for predicting limiting streamlines. By integrating boundary and geometric conditions with physics features like the curl and divergence of velocity, the model achieves accurate velocity field predictions while bypassing computationally intensive solvers. The model is trained and tested using computational fluid dynamics data. Results show that PE-FNO achieves a 13.3% improvement in accuracy over the baseline. In the analysis of four separation modes, PE-FNO shows a better prediction performance, particularly in large-scale separations. The physics-enhanced approach effectively captures the rising pressure gradient near the leading edge, reduces prediction errors in this region, and improves separation line prediction. Furthermore, Shapley additive explanations analysis is used to interpret predictions, identifying three key parameters influencing limiting streamline behavior: incidence, camber angle, and curved angle. The analysis explains how boundary conditions influence the velocity components along the end wall and suction surface, highlighting the role of each parameter in shaping separation characteristics throughout the compressor cascade. The proposed model provides a novel approach for estimating the extent of flow separation, offering valuable insights into the interactions between geometric and aerodynamic parameters in managing flow separation behavior.

1.
J. V.
Taylor
and
R. J.
Miller
, “
Competing three-dimensional mechanisms in compressor flows
,”
J. Turbomach.
139
,
021009
(
2017
).
2.
I.
Dawkins
,
J.
Taylor
,
X.
Ottavy
, and
R.
Miller
, “
The unsteady topology of corner separations
,”
J. Turbomach.
144
,
111001
(
2022
).
3.
G.
Zambonini
,
X.
Ottavy
, and
J.
Kriegseis
, “
Corner separation dynamics in a linear compressor cascade
,”
J. Fluids Eng.
139
,
061101
(
2017
).
4.
C.
Chen
,
F.
Chen
, and
J.
Yu
, “
Experimental investigation of end-wall VGJs in a compressor cascade
,”
Appl. Therm. Eng.
145
,
386
395
(
2018
).
5.
X.
Qiang
,
J.
Li
, and
Y.
Ma
, “
Experimental test of a compressor cascade with non-axisymmetric end-wall contouring at off-design conditions
,”
Appl. Therm. Eng.
240
,
122208
(
2024
).
6.
W.
Xu
,
X.
Du
,
S.
Wang
, and
Z.
Wang
, “
Correlation of solidity and curved blade in compressor cascade design
,”
Appl. Therm. Eng.
131
,
244
259
(
2018
).
7.
Z.
Li
and
R. K.
Agarwal
, “
Investigation of endwall effect on transitional flow inside compressor cascade passage at low Reynolds number
,”
Phys. Fluids
33
,
117108
(
2021
).
8.
R.
Li
,
L.
Gao
,
C.
Ma
,
S.
Lin
, and
L.
Zhao
, “
Corner separation dynamics in a high-speed compressor cascade based on detached-eddy simulation
,”
Aerosp. Sci. Technol.
99
,
105730
(
2020
).
9.
Z.
Li
and
X.
Zheng
, “
Review of design optimization methods for turbomachinery aerodynamics
,”
Prog. Aerosp. Sci.
93
,
1
23
(
2017
).
10.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
11.
H.
Wang
,
Y.
Cao
,
Z.
Huang
,
Y.
Liu
,
P.
Hu
,
X.
Luo
,
Z.
Song
,
W.
Zhao
,
J.
Liu
,
J.
Sun
et al, “
Recent advances on machine learning for computational fluid dynamics: A survey
,” arXiv:2408.12171 (
2024
).
12.
J.
Yu
and
J. S.
Hesthaven
, “
Flowfield reconstruction method using artificial neural network
,”
AIAA J.
57
,
482
498
(
2019
).
13.
V.
Sekar
,
Q.
Jiang
,
C.
Shu
, and
B. C.
Khoo
, “
Fast flow field prediction over airfoils using deep learning approach
,”
Phys. Fluids
31
,
057103
(
2019
).
14.
Y.
Jin
,
S.
Li
, and
O.
Jung
, “
Prediction of flow properties on turbine vane airfoil surface from 3D geometry with convolutional neural network
,” in
Turbo Expo: Power for Land, Sea, and Air
(
American Society of Mechanical Engineers
,
2019
), Vol.
58585
, p.
V02DT46A007
.
15.
J.
Johnson
,
A.
Alahi
, and
L.
Fei-Fei
, “
Perceptual losses for real-time style transfer and super-resolution
,” in
European Conference on Computer Vision
(
Springer International Publishing
,
2016
), pp.
694
711
.
16.
Q.
Wang
,
L.
Yang
, and
Y.
Rao
, “
Establishment of a generalizable model on a small-scale dataset to predict the surface pressure distribution of gas turbine blades
,”
Energy
214
,
118878
(
2021
).
17.
Y.
Niu
,
K.
Zhao
,
M.
Yao
,
Q.
Wu
,
S.
Yang
, and
L.
Ma
, “
Aerodynamic force prediction of compressor blade surfaces based on machine learning
,”
Phys. Fluids
36
,
083614
(
2024
).
18.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
19.
X.
Ren
,
P.
Hu
,
H.
Su
,
F.
Zhang
, and
H.
Yu
, “
Physics-informed neural networks for transonic flow around a cylinder with high Reynolds number
,”
Phys. Fluids
36
,
036129
(
2024
).
20.
L.
Lu
,
R.
Pestourie
,
W.
Yao
,
Z.
Wang
,
F.
Verdugo
, and
S. G.
Johnson
, “
Physics-informed neural networks with hard constraints for inverse design
,”
SIAM J. Sci. Comput.
43
,
B1105
B1132
(
2021
).
21.
N.
Kovachki
,
Z.
Li
,
B.
Liu
,
K.
Azizzadenesheli
,
K.
Bhattacharya
,
A.
Stuart
, and
A.
Anandkumar
, “
Neural operator: Learning maps between function spaces with applications to PDES
,” arXiv:2108.08481 (
2021
).
22.
Z.
Li
,
N.
Kovachki
,
K.
Azizzadenesheli
,
B.
Liu
,
K.
Bhattacharya
,
A.
Stuart
, and
A.
Anandkumar
, “
Fourier neural operator for parametric partial differential equations
,” arXiv:2010.08895 (
2020
).
23.
L.
Lu
,
P.
Jin
, and
G. E.
Karniadakis
, “
Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
,” arXiv:1910.03193 (
2019
).
24.
D.
Meng
,
Y.
Zhu
,
J.
Wang
, and
Y.
Shi
, “
Fast flow prediction of airfoil dynamic stall based on Fourier neural operator
,”
Phys. Fluids
35
,
115126
(
2023
).
25.
Z.
Li
,
W.
Peng
,
Z.
Yuan
, and
J.
Wang
, “
Fourier neural operator approach to large eddy simulation of three-dimensional turbulence
,”
Theor. Appl. Mech. Lett.
12
,
100389
(
2022
).
26.
Z.
Li
,
W.
Peng
,
Z.
Yuan
, and
J.
Wang
, “
Long-term predictions of turbulence by implicit U-Net enhanced Fourier neural operator
,”
Phys. Fluids
35
,
075145
(
2023
).
27.
G.
Wen
,
Z.
Li
,
K.
Azizzadenesheli
,
A.
Anandkumar
, and
S. M.
Benson
, “
U-FNO—An enhanced Fourier neural operator-based deep-learning model for multiphase flow
,”
Adv. Water Resour.
163
,
104180
(
2022
).
28.
M.
Banjac
,
M. V.
Petrovic
, and
A.
Wiedermann
, “
A new loss and deviation model for axial compressor inlet guide vanes
,”
J. Turbomach.
136
,
071011
(
2014
).
29.
J.
Sans
,
M.
Resmini
,
J.-F.
Brouckaert
, and
S.
Hiernaux
, “
Numerical investigation of the solidity effect on linear compressor cascades
,” in
Turbo Expo: Power for Land, Sea, and Air
(
American Society of Mechanical Engineers
,
2014
), Vol.
45608
, p.
V02AT37A013
.
30.
Y.
Song
,
F.
Chen
,
J.
Yang
, and
Z.
Wang
, “
A numerical investigation of boundary layer suction in compound lean compressor cascades
,”
J. Turbomach.
128
(
2
),
357
366
(
2006
).
31.
Z.
Li
,
D. Z.
Huang
,
B.
Liu
, and
A.
Anandkumar
, “
Fourier neural operator with learned deformations for PDES on general geometries
,” arXiv:2207.05209 (
2022
).
32.
M. M.
Rashid
,
T.
Pittie
,
S.
Chakraborty
, and
N. A.
Krishnan
, “
Learning the stress-strain fields in digital composites using Fourier neural operator
,”
Iscience
25
,
105452
(
2022
).
33.
Z.
Li
,
N.
Kovachki
,
K.
Azizzadenesheli
,
B.
Liu
,
K.
Bhattacharya
,
A.
Stuart
, and
A.
Anandkumar
, “
Neural operator: Graph kernel network for partial differential equations
,” arXiv:2003.03485 (
2020
).
34.
D.
Hendrycks
and
K.
Gimpel
, “
Gaussian error linear units (gelus)
,” arXiv:1606.08415 (
2016
).
35.
W.
Peng
,
Z.
Yuan
, and
J.
Wang
, “
Attention-enhanced neural network models for turbulence simulation
,”
Phys. Fluids
34
,
025111
(
2022
).
36.
X.
Deng
,
M.
Guo
,
H.
Chen
,
Y.
Tian
,
J.
Le
, and
H.
Zhang
, “
Dual-path flow field reconstruction for a scramjet combustor based on deep learning
,”
Phys. Fluids
34
,
095118
(
2022
).
37.
P.
Wu
,
S.
Gong
,
K.
Pan
,
F.
Qiu
,
W.
Feng
, and
C.
Pain
, “
Reduced order model using convolutional auto-encoder with self-attention
,”
Phys. Fluids
33
,
077107
(
2021
).
38.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
,
J.
Uszkoreit
,
L.
Jones
,
A. N.
Gomez
,
Ł.
Kaiser
, and
I.
Polosukhin
, “
Attention is all you need
,” arXiv:1706.03762 (
2017
).
39.
S.
Elfwing
,
E.
Uchibe
, and
K.
Doya
, “
Sigmoid weighted linear units for neural network function approximation in reinforcement learning
,”
Neural Networks
107
,
3
11
(
2018
).
40.
W.
Xu
,
X.
Du
,
C.
Tao
,
S.
Wang
, and
Z.
Wang
, “
Correlation of solidity, aspect ratio and compound lean blade in compressor cascade design
,”
Appl. Therm. Eng.
150
,
175
192
(
2019
).
41.
G.
Zhao
, “
Investigation of boundary condition and secondary flow control in curved-swept compressor cascade
,” Ph.D. thesis (
Harbin Institute of Technology
,
2005
) (in Chinese).
42.
R. A.
Saleh
and
A.
Saleh
, “
Statistical properties of the log-cosh loss function used in machine learning
,” arXiv:2208.04564 (
2022
).
43.
D. P.
Kingma
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
44.
J. V.
Taylor
, “
Separated flow topology in compressors
,”
J. Turbomach.
141
,
091014
(
2019
).
45.
Z.
Wang
,
A. C.
Bovik
,
H. R.
Sheikh
, and
E. P.
Simoncelli
, “
Image quality assessment: From error visibility to structural similarity
,”
IEEE Trans. Image Process.
13
,
600
612
(
2004
).
46.
S.
Lundberg
, “
A unified approach to interpreting model predictions
,” arXiv:1705.07874 (
2017
).
47.
C.
Wu
,
S.
Wang
,
X.-L.
Zhang
, and
G.
He
, “
Explainability analysis of neural network-based turbulence modeling for transonic axial compressor rotor flows
,”
Aerosp. Sci. Technol.
141
,
108542
(
2023
).
48.
X.
He
,
J.
Tan
,
G.
Rigas
, and
M.
Vahdati
, “
On the explainability of machine-learning-assisted turbulence modeling for transonic flows
,”
Int. J. Heat Fluid Flow
97
,
109038
(
2022
).
49.
A.
Cremades
,
S.
Hoyas
,
R.
Deshpande
,
P.
Quintero
,
M.
Lellep
,
W. J.
Lee
,
J. P.
Monty
,
N.
Hutchins
,
M.
Linkmann
,
I.
Marusic
et al, “
Identifying regions of importance in wall-bounded turbulence through explainable deep learning
,”
Nat. Commun.
15
,
3864
(
2024
).
50.
L. S.
Shapley
, “
A value for n-person games
,” in
Contributions to the Theory of Games II
(
Princeton University Press
,
1953
), Vol.
2
, pp.
307
317
.
You do not currently have access to this content.