This study develops a hierarchy of extreme gradient boosting (XGBoost)-based models to predict and interpret large-scale coherent structures in the atmospheric surface layer (ASL), utilizing 63 h of high-resolution field data collected during the Surface Layer Turbulence and Environmental Science Test campaign. The target variable is the filtered streamwise velocity at the outer-layer scale, and the models leverage dynamic and thermodynamic inputs sampled at one or two vertical levels. Results show that dual-height input configurations substantially improve predictive performance at elevated heights by capturing the vertical coherence of wall-attached eddies. In addition to accurate reconstruction of velocity fluctuations, the models recover the structural inclination angles of dominant turbulent motions, with predicted values closely matching two-point correlation estimates and empirical stability-dependent scaling. Notably, feature importance (FI) analysis reveals that the most influential input components align along the dominant inclination angle of coherent structures. This directional consistency is quantitatively validated by comparing FI-derived contours with traditional two-point correlation maps. Together, these findings demonstrate that XGBoost not only enables skillful prediction of large-scale ASL dynamics but also encapsulates physically meaningful structure orientation through interpretable metrics. The integration of machine learning with structural turbulence theory provides a robust framework for wind profile prediction, structure-aware modeling, and data-driven parameterization of wall-bounded flows.

1.
F.
Porté-Agel
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer
,”
J. Fluid Mech.
415
,
261
284
(
2000
).
2.
P. P.
Sullivan
,
T. W.
Horst
,
D. H.
Lenschow
,
C.-H.
Moeng
, and
J. C.
Weil
, “
Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling
,”
J. Fluid Mech.
482
,
101
139
(
2003
).
3.
E.
Bou-Zeid
,
C.
Meneveau
, and
M.
Parlange
, “
A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
(
2005
).
4.
A.
Townsend
,
The Structure of Turbulent Shear Flow
(
Cambridge University Press
,
UK
,
1976
),
442
pp.
5.
A. J.
Smits
,
B. J.
McKeon
, and
I.
Marusic
, “
High-Reynolds number wall turbulence
,”
Annu. Rev. Fluid Mech.
43
,
353
375
(
2011
).
6.
I.
Marusic
and
J. P.
Monty
, “
Attached eddy model of wall turbulence
,”
Annu. Rev. Fluid Mech.
51
,
49
74
(
2019
).
7.
X.
Li
,
N.
Hutchins
,
X.
Zheng
,
I.
Marusic
, and
W. J.
Baars
, “
Scale-dependent inclination angle of turbulent structures in stratified atmospheric surface layers
,”
J. Fluid Mech.
942
,
A38
(
2022
).
8.
M. A.
Carper
and
F.
Porté-Agel
, “
The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer
,”
J. Turbul.
5
,
32
(
2004
).
9.
K.
Chauhan
,
N.
Hutchins
,
J.
Monty
, and
I.
Marusic
, “
Structure inclination angles in the convective atmospheric surface layer
,”
Boundary Layer Meteorol.
147
,
41
50
(
2013
).
10.
X.
Li
,
G.
Wang
, and
X.
Zheng
, “
Study of coherent structures and heat flux transportation under different stratification stability conditions in the atmospheric surface layer
,”
Phys. Fluids
33
,
065113
(
2021
).
11.
L. S.
Kovasznay
,
V.
Kibens
, and
R. F.
Blackwelder
, “
Large-scale motion in the intermittent region of a turbulent boundary layer
,”
J. Fluid Mech.
41
,
283
325
(
1970
).
12.
B.
Balakumar
and
R.
Adrian
, “
Large- and very-large-scale motions in channel and boundary-layer flows
,”
Philos. Trans. R. Soc. A
365
,
665
681
(
2007
).
13.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
14.
K.
Kim
and
R.
Adrian
, “
Very large-scale motion in the outer layer
,”
Phys. Fluids
11
,
417
422
(
1999
).
15.
M.
Guala
,
S.
Hommema
, and
R.
Adrian
, “
Large-scale and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
554
,
521
542
(
2006
).
16.
I.
Marusic
,
R.
Mathis
, and
N.
Hutchins
, “
Predictive model for wall-bounded turbulent flow
,”
Science
329
,
193
196
(
2010
).
17.
N.
Hutchins
,
K.
Chauhan
,
I.
Marusic
,
J.
Monty
, and
J.
Klewicki
, “
Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory
,”
Boundary Layer Meteorol.
145
,
273
306
(
2012
).
18.
A. E.
Perry
and
M. S.
Chong
, “
On the mechanism of wall turbulence
,”
J. Fluid Mech.
119
,
173
217
(
1982
).
19.
J.
Jiménez
, “
Cascades in wall-bounded turbulence
,”
Annu. Rev. Fluid Mech.
44
,
27
45
(
2012
).
20.
Y.
Hwang
, “
Statistical structure of self-sustaining attached eddies in turbulent channel flow
,”
J. Fluid Mech.
767
,
254
289
(
2015
).
21.
W. J.
Baars
,
N.
Hutchins
, and
I.
Marusic
, “
Self-similarity of wall-attached turbulence in boundary layers
,”
J. Fluid Mech.
823
,
R2
(
2017
).
22.
T.
Chen
and
C.
Guestrin
, “
Xgboost: A scalable tree boosting system
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Association for Computing Machinery,
2016
), pp.
785
794
.
23.
B.
Li
,
Z.
Yang
,
X.
Zhang
,
G.
He
,
B.
Deng
, and
L.
Shen
, “
Using machine learning to detect the turbulent region in flow past a circular cylinder
,”
J. Fluid Mech.
905
,
A10
(
2020
).
24.
W.
Liu
,
Y.
Zou
, and
X.
Li
, “
Study of interscale interactions for turbulence over the obstacle arrays from a machine learning perspective
,”
Phys. Fluids
35
,
045103
(
2023
).
25.
X.
Li
,
X.
Hu
,
L.
Hu
,
P.
Li
, and
W.
Liu
, “
Detecting the large-scale wall-attached structural inclination angles by a machine learning perspective in turbulent boundary layer
,”
Phys. Fluids
36
,
035163
(
2024
).
26.
A.
Tavakoli
,
E.
Roohi
, and
M. S.
Namaghi
, “
Numerical simulation of free surface water waves around wavy hydrofoils: Prediction of hydrodynamic coefficients using machine learning
,”
J. Fluids Eng.
146
,
021501
(
2024
).
27.
M. R.
Shaeri
,
M. C.
Ellis
, and
A. M.
Randriambololona
, “
Xgboost-based model for prediction of heat transfer coefficients in liquid cold plates
,” in
ASTFE Digital Library
(
Begel House Inc
.,
2023
).
28.
Z.
Zhuang
,
H.
Zhang
,
P.-W.
Chan
,
H.
Tai
, and
Z.
Deng
, “
A machine learning-based model for flight turbulence identification using LiDAR data
,”
Atmosphere
14
,
797
(
2023
).
29.
R.
McConkey
,
E.
Yee
, and
F.-S.
Lien
, “
On the generalizability of machine-learning-assisted anisotropy mappings for predictive turbulence modelling
,”
Int. J. Comput. Fluid Dyn.
36
,
555
577
(
2022
).
30.
A.
Cremades
,
S.
Hoyas
,
R.
Deshpande
,
P.
Quintero
,
M.
Lellep
,
W. J.
Lee
,
J. P.
Monty
,
N.
Hutchins
,
M.
Linkmann
,
I.
Marusic
et al, “
Identifying regions of importance in wall-bounded turbulence through explainable deep learning
,”
Nat. Commun.
15
,
3864
(
2024
).
31.
A.
Cremades
,
S.
Hoyas
, and
R.
Vinuesa
, “
Classically studied coherent structures only paint a partial picture of wall-bounded turbulence
,” arXiv:2410.23189 (
2024
).
32.
K. T.
Christensen
and
R. J.
Adrian
, “
Statistical evidence of hairpin vortex packets in wall turbulence
,”
J. Fluid Mech.
431
,
433
443
(
2001
).
33.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
34.
W. J.
Baars
,
N.
Hutchins
, and
I.
Marusic
, “
Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model
,”
Phys. Rev. Fluids
1
,
054406
(
2016
).
35.
R. S.
Boppe
,
W. L.
Neu
, and
H.
Shuai
, “
Large-scale motions in the marine atmospheric surface layer
,”
Boundary Layer Meteorol.
92
,
165
183
(
1999
).
36.
H.
Liu
,
T.
Bo
, and
Y.
Liang
, “
The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers
,”
Phys. Fluids
29
,
035104
(
2017
).
37.
I.
Marusic
and
W. D.
Heuer
, “
Reynolds number invariance of the structure inclination angle in wall turbulence
,”
Phys. Rev. Lett.
99
,
114504
(
2007
).
38.
I.
Marusic
and
N.
Hutchins
, “
Study of the log-layer structure in wall turbulence over a very large range of Reynolds number
,”
Flow Turbul. Combust.
81
,
115
130
(
2008
).
39.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
40.
J.
Hwang
and
H. J.
Sung
, “
Wall-attached structures of velocity fluctuations in a turbulent boundary layer
,”
J. Fluid Mech.
856
,
958
983
(
2018
).
41.
R.
Hu
,
X. I.
Yang
, and
X.
Zheng
, “
Wall-attached and wall-detached eddies in wall-bounded turbulent flows
,”
J. Fluid Mech.
885
,
A30
(
2020
).
42.
M.
Puccioni
,
M.
Calaf
,
E. R.
Pardyjak
,
S.
Hoch
,
T. J.
Morrison
,
A.
Perelet
, and
G. V.
Iungo
, “
Identification of the energy contributions associated with wall-attached eddies and very-large-scale motions in the near-neutral atmospheric surface layer through wind LiDAR measurements
,”
J. Fluid Mech.
955
,
A39
(
2023
).
43.
G. I.
Taylor
, “
The spectrum of turbulence
,”
Proc. R. Soc. London, Ser. A
164
,
476
490
(
1938
).
44.
J.
Woodcock
and
I.
Marusic
, “
The statistical behaviour of attached eddies
,”
Phys. Fluids
27
,
015104
(
2015
).
45.
D.
Krug
,
W. J.
Baars
,
N.
Hutchins
, and
I.
Marusic
, “
Vertical coherence of turbulence in the atmospheric surface layer: Connecting the hypotheses of Townsend and Davenport
,”
Boundary Layer Meteorol.
172
,
199
214
(
2019
).
46.
W. J.
Baars
and
I.
Marusic
, “
Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra
,”
J. Fluid Mech.
882
,
A25
(
2020
).
47.
G.
Katul
,
A.
Porporato
,
D.
Cava
, and
M.
Siqueira
, “
An analysis of intermittency, scaling, and surface renewal in atmospheric surface layer turbulence
,”
Physica D
215
,
117
126
(
2006
).
48.
S.-L.
Kang
and
K. J.
Davis
, “
The effects of mesoscale surface heterogeneity on the fair-weather convective atmospheric boundary layer
,”
J. Atmos. Sci.
65
,
3197
3213
(
2008
).
49.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
1
28
(
2007
).
50.
R.
Mathis
,
N.
Hutchins
, and
I.
Marusic
, “
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
628
,
311
337
(
2009
).
51.
G.
Kirkil
,
J.
Mirocha
,
E.
Bou-Zeid
,
F. K.
Chow
, and
B.
Kosović
, “
Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF
,”
Mon. Weather Rev.
140
,
266
284
(
2012
).
52.
R.
Deshpande
,
C. M.
de Silva
, and
I.
Marusic
, “
Evidence that superstructures comprise self-similar coherent motions in high Reynolds number boundary layers
,”
J. Fluid Mech.
969
,
A10
(
2023
).
53.
M.
Heisel
,
C. M.
de Silva
,
G. G.
Katul
, and
M.
Chamecki
, “
Self-similar geometries within the inertial subrange of scales in boundary layer turbulence
,”
J. Fluid Mech.
942
,
A33
(
2022
).
54.
L.
Mahrt
, “
Stably stratified atmospheric boundary layers
,”
Annu. Rev. Fluid Mech.
46
,
23
45
(
2014
).
55.
S. T.
Salesky
and
W.
Anderson
, “
Coherent structures modulate atmospheric surface layer flux-gradient relationships
,”
Phys. Rev. Lett.
125
,
124501
(
2020
).
56.
S. M.
Lundberg
,
G.
Erion
,
H.
Chen
,
A.
DeGrave
,
J. M.
Prutkin
,
B.
Nair
,
R.
Katz
,
J.
Himmelfarb
,
N.
Bansal
, and
S.-I.
Lee
, “
From local explanations to global understanding with explainable ai for trees
,”
Nat. Mach. Intell.
2
,
56
67
(
2020
).
57.
B.
Ganapathisubramani
,
N.
Hutchins
,
W.
Hambleton
,
E.
Longmire
, and
I.
Marusic
, “
Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations
,”
J. Fluid Mech.
524
,
57
80
(
2005
).
58.
H.
Mandler
and
B.
Weigand
, “
Feature importance in neural networks as a means of interpretation for data-driven turbulence models
,”
Comput. Fluids
265
,
105993
(
2023
).
59.
X.
He
,
J.
Tan
,
G.
Rigas
, and
M.
Vahdati
, “
On the explainability of machine-learning-assisted turbulence modeling for transonic flows
,”
Int. J. Heat Fluid Flow
97
,
109038
(
2022
).
You do not currently have access to this content.