The startup performance of the hybrid hydrokinetic turbine rotor has seldom been reported. The relationship between time-varying rotor performance and instantaneous flow field during the startup process remains uninterpreted. The present study combined the H-type lift rotor with Bach rotor(s) through three different manners of configuration and attempted to clarify the effect of the drag rotor on the flow and startup characteristics of the lift rotor. The proposed hybrid rotors were horizontally installed. The method incorporating the computational fluid dynamics technique and six degrees-of-freedom model was applied. The results show that when Bach rotor is enclosed by the lift blades, the highest rotational speed and shortest startup time are achieved. At a tip speed ratio of 1.26, the maximum power coefficient of 0.257 is obtained. When the drag and lift rotors are installed side by side, the torque coefficients are relatively large, but the startup performance degrades. The wake flows significantly differ with the rotor scheme. A mixed wake is evidenced downstream of the side-by-side rotor, while for the inner–outer rotor structure, the wake of the drag rotor is immediately disintegrated by the lift blades, and the wake is explicitly dominated by the lift rotor. The obtained conclusions serve as a sound reference to effective utilization of the kinetic energy of water through the hybrid hydrokinetic turbine rotor.

1.
M. M.
Kamal
and
R. P.
Saini
, “
A review on modifications and performance assessment techniques in cross-flow hydrokinetic system
,”
Sustainable Energy Technol. Assess.
51
,
101933
(
2022
).
2.
M.
Ghasemian
,
Z. N.
Ashrafi
, and
A.
Sedaghat
, “
A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines
,”
Energy Convers. Manage.
149
,
87
100
(
2017
).
3.
M. J.
Khan
,
M. T.
Iqbal
, and
J. E.
Quaicoe
, “
River current energy conversion systems: Progress, prospects and challenges
,”
Renewable Sustainable Energy Rev.
12
(
8
),
2177
2193
(
2008
).
4.
S. E.
Ben Elghali
,
M. E. H.
Benbouzid
, and
J. F.
Charpentier
, “
Marine tidal current electric power generation technology: State of the art and current status
,” in
IEEE International Electric Machines & Drives Conference, 3–5 May 2007, Antalya, Turkey
(
IEEE
,
2007
).
5.
A. N.
Gorban
,
A. M.
Gorlov
, and
V. M.
Silantyev
, “
Limits of the turbine efficiency for free fluid flow
,”
J. Energy Resour. Technol.
123
(
4
),
311
317
(
2001
).
6.
A. H.
Birjandi
,
E. L.
Bibeau
,
V.
Chatoorgoon
, and
A.
Kumar
, “
Power measurement of hydrokinetic turbines with free-surface and blockage effect
,”
Ocean Eng.
69
,
9
17
(
2013
).
7.
L. E.
Myers
and
A. S.
Bahaj
, “
An experimental investigation simulating flow effects in first generation marine current energy converter arrays
,”
Renewable Energy
37
(
1
),
28
36
(
2012
).
8.
K. A. H.
Al-Gburi
,
F. B. I.
Alnaimi
,
B. A.
Quraishi
,
E. S.
Tan
, and
M. M.
Maseer
, “
A comparative study review: The performance of Savonius-type rotors
,”
Mater. Today: Proc.
57
,
343
349
(
2022
).
9.
G.
Saini
and
R. P.
Saini
, “
A review on technology, configurations, and performance of cross-flow hydrokinetic turbines
,”
Int. J. Energy Res.
43
,
6639
6679
(
2019
).
10.
F.
Behrouzi
,
M.
Nakisa
,
A.
Maimun
, and
Y. M.
Ahmed
, “
Global renewable energy and its potential in Malaysia: A review of hydrokinetic turbine technology
,”
Renewable Sustainable Energy Rev.
62
,
1270
1281
(
2016
).
11.
A.
Hijazi
,
A.
Elcheikh
, and
M.
Elkhoury
, “
Numerical investigation of the use of flexible blades for vertical axis wind turbines
,”
Energy Convers. Manage.
299
,
117867
(
2024
).
12.
A.
Arab
,
M.
Javadi
,
M.
Anbarsooz
, and
M.
Moghiman
, “
A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia
,”
Renewable Energy
107
,
298
311
(
2017
).
13.
C.
Kang
,
H.
Liu
, and
X.
Yang
, “
Review of fluid dynamics aspects of Savonius-rotor-based vertical-axis wind rotors
,”
Renewable Sustainable Energy Rev.
33
,
499
508
(
2014
).
14.
B. D.
Altan
and
M.
Atlgan
, “
An experimental and numerical study on the improvement of the performance of Savonius wind rotor
,”
Energy Convers. Manage.
49
,
3425
3432
(
2008
).
15.
G.
Saini
and
R. P.
Saini
, “
Clearance and blockage effects on hydrodynamic performance of hybrid hydrokinetic turbine
,”
Sustainable Energy Technol. Assess.
57
,
103210
(
2023
).
16.
J. D.
Tan
,
C. C. W.
Chang
,
M. A. S.
Bhuiyan
,
K.
Nisa'Minhad
, and
K.
Ali
, “
Advancements of wind energy conversion systems for low-wind urban environments: A review
,”
Energy Rep.
8
,
3406
3414
(
2022
).
17.
N. R.
Maldar
,
N. C.
Yee
,
E.
Oguz
, and
S.
Krishna
, “
Performance investigation of a drag-based hydrokinetic turbine considering the effect of deflector, flow velocity, and blade shape
,”
Ocean Eng.
266
,
112765
(
2022
).
18.
H.
Zhao
,
C.
Kang
,
K.
Ding
,
Y.
Zhang
, and
B.
Li
, “
Transient startup characteristics of a drag-type hydrokinetic turbine rotor
,”
Energy Convers. Manage.
223
,
113287
(
2020
).
19.
V. J.
Modi
and
M. S. U. K.
Fernando
, “
On the performance of the Savonius wind turbine
,”
J. Sol. Energy Eng.-Trans. ASME
111
,
71
81
(
1989
).
20.
M. T.
Asr
,
E. Z.
Nezhad
,
F.
Mustapha
, and
S.
Wiriadidjaja
, “
Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils
,”
Energy
112
,
528
537
(
2016
).
21.
S. R.
Mirmotahari
,
F.
Ghafoorian
,
M.
Mehrpooya
,
S. H.
Rad
,
M.
Taraghi
, and
M.
Moghimi
, “
A comprehensive investigation on Darrieus vertical axis wind turbine performance and self-starting capability improvement by implementing a novel semi-directional airfoil guide vane and rotor solidity
,”
Phys. Fluids
36
,
065151
(
2024
).
22.
G. V.
Babu
and
D. K.
Patel
, “
Performance analysis of a Savonius hydrokinetic turbine with aerodynamic blade shape and different overlap ratios: A numerical flow–driven approach
,”
Ocean Eng.
304
,
117868
(
2024
).
23.
K.
Liu
,
M.
Yu
, and
W.
Zhu
, “
Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid–structure interaction study
,”
Renewable Energy
140
,
912
927
(
2019
).
24.
M. A.
Kamoji
,
S. B.
Kedare
, and
S. V.
Prabhu
, “
Experimental investigations on single stage modified Savonius rotor
,”
Appl. Energy
86
(
7–8
),
1064
1073
(
2009
).
25.
K.
Kacprzak
,
G.
Liskiewicz
, and
K.
Sobczak
, “
Numerical investigation of conventional and modified Savonius wind turbines
,”
Renewable Energy
60
,
578
585
(
2013
).
26.
M.
Asadi
and
R.
Hassanzadeh
, “
On the application of semicircular and Bach–type blades in the internal Savonius rotor of a hybrid wind turbine system
,”
J. Wind Eng. Ind. Aerodyn.
221
,
104903
(
2022
).
27.
S.
Brusca
,
R.
Lanzafame
, and
M.
Messina
, “
Design of a vertical–axis wind turbine: How the aspect ratio affects the turbine's performance
,”
Int. J. Energy Environ. Eng.
5
(
4
),
333
340
(
2014
).
28.
M. H.
Mohamed
, “
Performance investigation of H-rotor Darrieus turbine with new airfoil shapes
,”
Energy
47
(
1
),
522
530
(
2012
).
29.
S. C.
Roh
and
S. H.
Kang
, “
Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine
,”
J. Mech. Sci. Technol.
27
(
11
),
3299
3307
(
2013
).
30.
S.
Roy
and
U. K.
Saha
, “
Wind tunnel experiments of a newly developed two–bladed Savonius–style wind turbine
,”
Appl. Energy
137
,
117
125
(
2015
).
31.
S.
Osama
,
M.
Emam
,
S.
Ookawara
, and
M.
Ahmed
, “
Enhancing the performance of vertical axis hydrokinetic Savonius turbines using a novel cambered hydrofoil profile for rotor blades
,”
Ocean Eng.
292
,
116561
(
2024
).
32.
G.
Saini
and
R. P.
Saini
, “
Study of installations of hydrokinetic turbines and their environmental effects
,”
AIP Conf. Proc.
2273
,
050022
(
2020
).
33.
M.
Kamal
,
S. K.
Singal
, and
A.
Abbas
, “
Numerical analysis on the torque characteristics of hybrid hydrokinetic turbine for different configurations and operating conditions
,”
Ocean Eng.
288
,
116061
(
2023
).
34.
M. M.
Kamal
,
A.
Abbas
,
T.
Alam
,
N. K.
Gupta
,
R.
Khargotra
, and
T.
Singh
, “
Hybrid cross-flow hydrokinetic turbine: Computational analysis for performance characteristics with helical Savonius blade angle of 135°
,”
Results Eng.
20
,
101610
(
2023
).
35.
X.
Liang
,
S.
Fu
,
B.
Ou
,
C.
Wu
,
C. Y. H.
Chao
, and
K.
Pi
, “
A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus–Savonius combined wind turbine
,”
Renewable Energy
113
,
329
334
(
2017
).
36.
A.
Hosseini
and
N.
Goudarzi
, “
CFD and control analysis of a smart hybrid vertical axis wind turbine
,” in
ASME 2018 Power Conference Collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum, 24–28 June 2018, Lake Buena Vista, FL
(
ASME
,
2018
).
37.
C.
Kang
,
H.
Zhao
,
Y.
Zhang
, and
K.
Ding
, “
Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor
,”
Renewable Energy
172
,
290
303
(
2021
).
38.
L. B.
Kothe
,
S. V.
Möller
, and
A. P.
Petry
, “
Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine
,”
Renewable Energy
148
,
627
638
(
2020
).
39.
Y.
Chen
,
Y.
Chen
,
J.
Zhou
,
P.
Guo
, and
J.
Li
, “
Optimization and performance study of bidirectional Savonius tidal turbine cluster with deflectors
,”
Energy Convers. Manage.
283
,
116947
(
2023
).
40.
V. N.
Chaudhari
and
S. P.
Shah
, “
Performance enhancement of Savonius hydrokinetic turbine using split airfoil blade: A numerical investigation
,”
Renewable Energy
224
,
120158
(
2024
).
41.
T. Q.
Le
,
K. S.
Lee
,
J. S.
Park
, and
J. H.
Ko
, “
Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades
,”
Int. J. Naval Archit. Ocean Eng.
6
(
2
),
257
268
(
2014
).
42.
M. M.
Kamal
and
R. P.
Saini
, “
Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters
,”
Energy
267
,
126541
(
2023
).
43.
M.
Takao
,
H.
Kuma
,
T.
Maeda
,
Y.
Kamada
,
M.
Oki
, and
A.
Minoda
, “
A straight-bladed vertical axis wind turbine with a directed guide vane row
,”
J. Therm. Sci.
18
,
54
57
(
2009
).
44.
T. G.
Shanegowda
,
C. M.
Shashikumar
,
G.
Veershetty
, and
M.
Vasudeva
, “
Numerical studies on the performance of Savonius hydrokinetic turbines with varying blade configurations for hydropower utilization
,”
Energy Convers. Manage.
312
,
118535
(
2024
).
45.
M. S.
Khani
,
Y.
Shahsavani
,
M.
Mehraein
,
M. H. S.
Rad
, and
A. A.
Nikbakhsh
, “
Evaluation of the performance of the Savonius hydrokinetic turbines in the straight and curved channels using advanced machine learning methods
,”
Energy
290
,
130189
(
2024
).
46.
G.
Dong
,
Z.
Zhao
,
C.
Xu
, and
J.
Qin
, “
Wake dynamics of side-by-side hydrokinetic turbines in open channel flows
,”
Phys. Fluids
36
,
115166
(
2024
).
47.
M. B.
Salleh
,
N. M.
Kamaruddin
, and
Z.
Mohamed-Kassim
, “
Experimental investigation on the effects of deflector angles on the power performance of a Savonius turbine for hydrokinetic applications in small rivers
,”
Energy
247
,
123432
(
2022
).
You do not currently have access to this content.