This article is devoted to elaborating the influence mechanism of hub cap shape on the rotor root flow field of axial fan and developing an analytical model for quick design of hub cap. The hub cap of various length ratio and shape was generated using a tested polynomial for an axial fan with Hr = 0.45, and numerical simulations are used to determine the variation of hub cap on axial fan flow field and aero performance. Research found that there exists a critical length ratio for hub cap such that a further reduction of the length ratio will lead to excessive meridional flow angle at the junction plane and inception of rotor root flow separation. The sharper hub cap (decrease in shape coefficient S) makes the hub separation region further expand and migrate toward the rotor pressure surface, resulting in a larger separation vortex. Furthermore, an physical-based analytical model calculating the velocity non-uniformity caused by hub cap is proposed to predict the hub cap critical length ratio for a quick design criterion of hub cap to achieve low loss while keeping short length. The analytical model calculated hub cap critical length ratio LRCr for axial fan of Hr = 0.35–0.65 is 1.29–0.60 and independent of the absolute size of axial fan, which is verified by simulations.

1.
Y. I.
Kim
,
S. Y.
Lee
,
H. M.
Yang
,
K.-Y.
Lee
,
S.-H.
Yang
, and
Y.-S.
Choi
, “
Suppression of stall-induced instability and positive slope at low flow rates of an axial fan with two-dimensional anti-stall fin
,”
ASME J. Fluids Eng.
144
,
121205
(
2022
).
2.
A. J.
Venter
,
M. T. F.
Owen
, and
J.
Muiyser
, “
A numerical analysis of windscreen effects on air-cooled condenser fan performance
,”
Appl. Therm. Eng.
186
,
116416
(
2021
).
3.
H.
Ma
,
N.
Cai
,
L.
Cai
, and
F.
Si
, “
Effects of the forced convection induced by assistant fans on the thermal performance of an indirect dry cooling system
,”
Case Stud. Therm. Eng.
35
,
102141
(
2022
).
4.
Z.
Wang
,
J.
Liu
,
H.
Wang
,
B.
Zhang
,
W.
Liu
,
E. D.
Ozdemir
, and
M. H.
Aksel
, “
Numerical and experimental investigation on the integrate performance of axial flow cooling fan and heat exchanger
,”
Appl. Therm. Eng.
245
,
122814
(
2024
).
5.
T.
Zou
,
X.
Hu
,
S.
Hu
,
Z.
Du
, and
J.
Tian
, “
The effect of blade surface grooves on performance of axial fan
,”
Phys. Fluids
36
,
124120
(
2024
).
6.
K.
Bamberger
and
T.
Carolus
, “
Efficiency limits of fans
,”
Proc. Inst. Mech. Eng. Part A, J. Power Energy
234
,
739
(
2020
).
7.
Y.
Li
and
J.
Liu
, “
Internal flow mechanism and experimental research of low pressure axial fan with forward-skewed blades
,”
J. Hydrodyn.
20
,
299
(
2008
).
8.
K.
Bamberger
and
T.
Carolus
, “
Development, application and validation of a quick optimization method for the class of axial fans
,”
J. Turbomach.
139
,
111001
(
2017
).
9.
W.
Zhang
,
D.
Yu
,
G.
Li
,
C.
Zhao
, and
Z.
Liu
, “
The mechanisms of drag reduction through bionic microstructures on fan blade surfaces
,”
Phys. Fluids
37
,
025190
(
2025
).
10.
C.
Li
,
X.
Li
,
P.
Li
, and
X.
Ye
, “
Numerical investigation of impeller trimming effect on performance of an axial flow fan
,”
Energy
75
,
534
(
2014
).
11.
A.
Pogorelov
,
M.
Meinke
, and
W.
Schröder
, “
Effects of tip-gap width on the flow field in an axial fan
,”
Int. J. Heat Fluid Fl.
61
,
466
(
2016
).
12.
Y. I.
Kim
,
H.
Yang
,
K. Y.
Lee
, and
Y. S.
Choi
, “
Numerical investigation on functional limitations of the anti‐stall fan for an axial fan: One‐factor analyses
,”
Sci. Rep.
12
,
15240
(
2022
).
13.
C.
Kong
,
M.
Wang
,
T.
Jin
, and
S.
Liu
, “
The blade shape optimization of a low pressure axial fan using the surrogate based multi-objective optimization method
,”
J. Mech. Sci. Technol.
37
,
179
(
2023
).
14.
M.
Shekaridahaj
,
F. K.
Mirza
, and
B.
Farhanieh
, “
Numerical investigation of aerodynamic performance of an axial fan blade equipped with vortex generators
,”
AIP Adv.
13
,
045210
(
2023
).
15.
C.
Yang
,
Q.
Li
,
W.
Yan
, and
Y.
Lu
, “
Numerical and experimental investigation of the fan structure effects on performance
,”
J. Aerosp. Power
20
,
512
(
2005
).
16.
C.-M.
Jang
,
S.-M.
Choi
, and
K.-Y.
Kim
, “
Effects of inflow distortion due to hub cap's shape on the performance of axial flow fan
,”
J. Fluid Sci. Technol.
3
,
598
(
2008
).
17.
J. H.
Jung
and
W.-G.
Joo
, “
The effect of the entrance hub geometry on the efficiency in an axial flow fan
,”
Int. J. Refrig.
101
,
90
(
2019
).
18.
J. H.
Kim
,
J. W.
Kim
, and
K. Y.
Kim
, “
Axial-flow ventilation fan design through multi-objective optimization to enhance aerodynamic performance
,”
ASME J. Fluids Eng.
133
,
101101
(
2011
).
19.
J.-H.
Kim
,
B.
Ovgor
,
K.-H.
Cha
,
J.-H.
Kim
,
S.
Lee
, and
K.-Y.
Kim
, “
Optimization of the aerodynamic and aeroacoustic performance of an axial-flow fan
,”
AIAA J
52
,
2032
(
2014
).
20.
P. R.
Spalart
and
S. R.
Allmaras
,
A One-Equation Turbulence Model for Aerodynamic Flows
(
AIAA
,
Reno, NV
,
1992
).
21.
H. I. H.
Saravanamuttoo
,
G. F. C.
Rogers
,
H.
Cohen
,
P.
Straznicky
, and
A.
Nix
,
Gas Turbine Theory
(
Pearson Education Limited
,
2017
).
You do not currently have access to this content.