This paper considers theoretical and empirical approaches to the formation of a mathematical model of heating and evaporation of polydisperse water droplets with diameters of 5…100 μm in an air flow with an initial temperature of up to 600 K and a velocity of up to 100 m/s at Weber numbers not exceeding critical values. The developed mathematical model takes into account the change in gas temperature when its initial enthalpy is spent on heating and evaporation of dispersed liquid as well as a decrease in the level of interphase convective heat exchange at the onset of liquid evaporation and the formation of a vapor layer near the droplets. Based on the analysis of the previously obtained experimental database, the values of empirical coefficients for the developed mathematical model were established. In order to validate the mathematical model, a detailed comparison of the calculated data with previously published experiments of the authors' team as well as other researchers was carried out. The presented equations and regularities can be adapted for various modes of heat and mass transfer between dispersed liquids and gases used in power engineering.

1.
K.
Arefyev
,
A. V.
Voronetskiy
,
M. A.
Abramov
,
A. S.
Saveliev
,
A. V.
Nikoporenko
,
E. S.
Pryadko
,
L. S.
Yanovskiy
, and
V. M.
Ezhov
, “
Physical modeling of motion and evaporation of polydisperse water droplets in a high-enthalpy air flow
,”
Phys. Fluids
37
(
1
),
013372
(
2025
).
2.
Y.
Ling
,
D.
Fuster
,
G.
Tryggvason
,
R.
Scardovelli
, and
S.
Zaleski
, “
3D DNS of spray formation in gas-assisted atomization
,” in
Proceedings of the XXIV International Congress of Theoretical and Applied Mechanics, Montreal, Canada
,
2016
.
3.
J. J. S.
Jerome
,
S.
Marty
,
J.-P.
Matas
,
S.
Zaleski
, and
J.
Hoepffner
, “
Vortices catapult droplets in atomization
,”
Phys. Fluids
25
(
11
),
112109
(
2013
).
4.
O. A.
George
,
J.
Xiao
,
C. S.
Rodrigo
et al, “
Detailed numerical analysis of evaporation of a micrometer water droplet suspended on a glass filament
,”
Chem. Eng. Sci.
165
,
33
47
(
2017
).
5.
R.
Banerjee
, “
Numerical investigation of evaporation of a single ethanol/iso-octane droplet
,”
Fuel
107
,
724
739
(
2013
).
6.
S.
Tonini
and
G. E.
Cossali
, “
A novel vaporization model for a single-component drop in high temperature air streams
,”
Int. J. Therm. Sci.
75
,
194
203
(
2014
).
7.
J.
Li
and
J.
Zhang
, “
A theoretical study of the spheroidal droplet evaporation in forced convection
,”
Phys. Lett. A
378
(
47
),
3537
3543
(
2014
).
8.
J.
Sim
,
H.
Im
, and
S.
Chung
, “
A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources
,”
Phys. Fluids
27
,
053302
(
2015
).
9.
K.
Arefev
and
A. V.
Voronetsky
, “
Modeling process fragmentation vaporization non-reacting liquid droplets in high-enthalpy gas flows
,”
Thermophys. Aeromech.
22
,
585
596
(
2015
).
10.
K.
Brinckman
,
A.
Hosangadi
,
V.
Ahuja
,
S.
Dash
, and
G.
Feldman
, “
A CFD methodology for liquid jet breakup and vaporization predictions in compressible flows
,”
46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada
,
2008
.
11.
R. D.
Reitz
, “
Modeling atomization processes in high-pressure vaporizing sprays
,”
Atomization Spray Technol.
3
,
309
337
(
1987
).
12.
A. A.
Aksenov
,
S. V.
Zhluktov
,
V. S.
Kashirin
,
M. L.
Sazonova
,
S. G.
Cherny
,
E. A.
Drozdova
, and
A. A.
Rode
, “
Numerical modeling of raw atomization and vaporization by flow of heat carrier gas in furnace technical carbon production into FlowVision
,”
Comput. Res. Model.
15
(
4
),
921
939
(
2023
).
13.
N. M.
Zahari
,
M. H.
Zawawi
,
L. M.
Sidek
,
D.
Mohamad
,
Z.
Itam
,
M. Z.
Ramli
,
A.
Syamsir
,
A.
Abas
, and
M.
Rashid
, “
Introduction of discrete phase model (DPM) in fluid flow: A review
,”
AIP Conf. Proc.
2030
,
020234
(
2018
).
14.
N.
Kharoua
,
M.
AlShehhi
, and
L.
Khezzar
, “
Prediction of black powder distribution in junctions using the Discrete Phase Model
,”
Powder Technol.
286
,
202
211
(
2015
).
15.
K. Y.
Arefyev
,
A. V.
Voronetsky
,
S. A.
Suchkov
, and
M. A.
Ilchenko
, “
Computational and experimental study of the two-phase mixing in gas-dynamic ignition system
,”
Thermophys. Aeromech.
24
,
225
237
(
2017
).
16.
A.
Zakharevich
,
G.
Kuznetsov
, and
P.
Strizhak
, “
Experimental investigation of the change in temperature at the center of a water droplet in the process of evaporation in heated air
,”
J. Eng. Phys. Thermophys.
89
,
548
(
2016
).
17.
A.
Snegirev
and
A. L.
Lipjainen
, “
Modeling and simulations of fine water spray in buoyant turbulent diffusion flame
,”
Heat Transfer Res.
39
(
2
),
133
149
(
2008
).
18.
M.
Bini
and
W. P.
Jones
, “
Large eddy simulation of an evaporating acetone spray
,”
Int. J. Heat Fluid Flow.
30
(
3
),
471
480
(
2009
).
19.
S.
Sazhin
,
O.
Rybdylova
,
A.
Pannala
,
S.
Somavarapu
, and
S.
Zaripov
, “
A new model for a drying droplet
,”
Int. J. Heat Mass Transfer
122
,
451
(
2018
).
20.
S. M.
Frolov
,
V. S.
Posvyansky
,
V. Y.
Basevich
,
A. A.
Belyaev
,
B. A.
Smetanyuk
,
I. V.
Semyenov
, and
V. V.
Markov
, “
Evaporation and combustion of droplet of hydrocarbon fuel. Part 2. Non-empiric model of evaporation of droplet taking into account multicomponent diffusion
,”
Khimicheskaya fizika
23
(
4
),
75
83
(
2004
).
21.
V. A.
Smetanyuk
and
S. M.
Frolov
, “
Evaporation and combustion of hydrocarbon fuel droplet. Part III: Droplet heating in gas flow with regard for internal liquid circulation
,”
Khimicheskaya fizika
23
(
7
),
40
48
(
2004
).
22.
S. M.
Frolov
,
V. Y.
Basevich
,
V. S.
Posvyansky
, and
V. A.
Smetanyuk
, “
Evaporation and combustion of hydrocarbon fuel droplet. Part IV: Droplet evaporation with regard for spray effects
,”
Khimicheskaya fizika
23
(
7
),
49
58
(
2004
).
23.
A. A.
Borisov
,
S. M.
Frolov
,
V. A.
Smetanyuk
,
S. A.
Polikhov
, and
K.
Segal
, “
Interaction of fuel droplet with gas flow
,”
Khimicheskaya fizika
24
(
7
),
50
57
(
2005
).
24.
R. S.
Volkov
,
G. V.
Kuznetsov
, and
P. A.
Strizhak
, “
Analysis of the effect exerted by the initial temperature of atomized water on the integral characteristics of its evaporation during motion through the zone of ‘hot’ gases
,”
J. Eng. Phys. Thermophys.
87
,
450
458
(
2014
).
25.
O. V.
Vysokomornaya
,
G. V.
Kuznetsov
, and
P. A.
Strizhak
, “
Heat and mass transfer in the process of movement of water drops in a high-temperature gas medium
,”
J. Eng. Phys. Thermo.
86
(
1
),
62
68
(
2013
).
26.
S.
Briney
and
S.
Balachandar
, “
Euler–Lagrange stochastic modeling of droplet breakup and impact in supersonic flight
,”
Phys. Fluids
35
(
1
),
016103
(
2023
).
27.
K.
Aref'ev
and
N. V.
Kukshinov
, “
Serpinskii OS Methodology of experimentally determining the combustion efficiency of fuel mixture flows in channels of variable cross-section
,”
Fluid Dyn.
52
(
5
),
682
694
(
2017
).
28.
A. V.
Voronetsky
,
S. A.
Suchkov
, and
L. A.
Filimonov
, “
Peculiarities of high-temperature two-phase flow of combustion products in channels with an intentionally structured system of shock-waves
,”
Thermophys. Aeromech.
14
(
2
),
201
210
(
2007
).
29.
C.
Ortiz
,
D. D.
Joseph
, and
G. S.
Beavers
, “
Acceleration of a liquid drop suddenly exposed to a high-speed airstream
,”
Int. J. Multiphase Flow
30
,
217
224
(
2004
).
30.
S.
Feng
,
L.
Xiao
,
Z.
Ge
,
L.
Yang
,
X.
Du
, and
H.
Wu
, “
Parameter analysis of atomized droplets sprayed evaporation in flue gas flow
,”
Int. J. Heat Mass Transfer
129
,
936
952
(
2019
).
31.
S. A.
Burtsev
, “
Analysis of the Prandtl number impact on the temperature recovery factor value
,”
Sci. Educ. Bauman MSTU
17
,
78
96
(
2017
).
32.
B. G.
Trusov
,
Program package TERRA for simulation of phase and chemical equilibrium at high temperatures
, in
The 3rd International Symposium on Combustion and Plasmachemistry (Almaty, Kazakhstan, August 24–26, 2005)
(
Al-Farabi Kazakh National University
,
Almaty
,
2005
), pp.
52
57
.
33.
K.
Aref'ev
,
M. A.
Abramov
,
A. V.
Voronetskii
, and
E. E.
Son
, “
Optimizing the injection of two-phase gasification products of power condensed compositions into a model combustion chamber with small extension
,”
High Temp.
60
(
1
),
85
93
(
2022
).
34.
W. G.
Reinecke
and
W. L.
McKay
, “
Experiments on water drop breakup behind Mach number 3 to 12 shocks
,”
Report No. SC-CR-70-6063
(
Avco Corporation
,
1969
).
35.
W. G.
Reinecke
and
G. D.
Waldman
, “
Shock layer shattering of cloud drops in reentry flight
,” in
13th Aerospace Sciences Meeting
,
1975
.
36.
P. G.
Simpkins
and
E. L.
Bales
, “
Water-drop response to sudden accelerations
,”
J. Fluid Mech.
55
,
629
639
(
1972
).
37.
O. G.
Engel
, “
Fragmentation of waterdrops in the zone behind an air shock
,”
J. Res. Natl. Bur. Stand.
60
,
245
280
(
1958
).
38.
V. A.
Arkhipov
,
S. A.
Basalaev
,
N. N.
Zolotorev
,
K. G.
Perfil'eva
, and
A. S.
Usanina
, “
Peculiarities of droplet evaporation under radiative and convective heating
,”
Tech. Phys. Lett.
46
(
4
),
378
381
(
2020
).
39.
V. A.
Arkhipov
,
S. A.
Basalaev
, and
A. I.
Konovalenko
, “
Perfil'eva KG Evaporation of a droplet cluster moving in a high-temperature gas medium
,”
Tech. Phys. Lett.
46
(
6
),
610
613
(
2020
).
40.
G. V.
Kuznetsov
and
P. A.
Strizhak
, “
Evaporation of single droplets and dispersed liquid flow in motion through high-temperature combustion products
,”
High Temp.
52
(
4
),
568
575
(
2014
).
41.
V.
Arkhipov
,
S.
Basalaev
,
N.
Zolotorev
,
A.
Usanina
,
K.
Perfilieva
, and
E.
Maslov
, “
Special aspects of the drop evaporation during radiant heating
,”
AIP Conf. Proc.
2212
(
1
),
020004
(
2020
).
You do not currently have access to this content.