This study investigates the behaviors of a cavitation bubble in the vicinity of a hemisphere on a flat wall using a numerical solver of the OpenFOAM platform. First, the typical collapse behavior of the cavitation bubble is analyzed by examining the evolution of the pressure and temperature fields. Second, the spatial–temporal evolution of temperature along the symmetry axis of the cavitation bubble and the variations in temperature and pressure at the hemisphere vertex are analyzed. Finally, the influence of the stand-off distance and hemisphere radius on collapse behavior is discussed. From the numerical results, four distinct cases of collapse behavior are identified, and these cases are associated with the hemisphere radius and the stand-off distance. As the jet impinges on the hemisphere vertex, the temperature at the vertex initially rises due to the high temperature generated when the jet pierces the bubble and then decreases because of the low-temperature liquid within the jet. For a hemisphere with a small radius, the jet undergoes deflection upon impact, which then causes the cavitation bubble to fragment into two or three annular bubbles.

1.
T. R.
Bajracharya
,
B.
Acharya
,
C. B.
Joshi
,
R.
Saini
, and
O. G.
Dahlhaug
, “
Sand erosion of Pelton turbine nozzles and buckets: A case study of Chilime Hydropower Plant
,”
Wear
264
,
177
184
(
2008
).
2.
J.
Kühlmann
and
S. A.
Kaiser
, “
Single-bubble cavitation-induced pitting on technical alloys
,”
Tribol. Lett.
72
,
55
(
2024
).
3.
U.
Dorji
and
R.
Ghomashchi
, “
Hydro turbine failure mechanisms: An overview
,”
Eng. Failure Anal.
44
,
136
147
(
2014
).
4.
H.
Yu
,
Y.
Zhang
,
X.
Zhang
,
Z.
Wang
,
Y.
Wang
, and
D.
Zhang
, “
Dynamic behavior and spatio-temporal mechanical characteristics of the individual cavitation bubble on hydraulic concrete wall
,”
Ocean Eng.
312
,
119197
(
2024
).
5.
X.
Wang
,
C.
Zhang
,
J.
Shen
,
Y.
Zhang
, and
H.
Su
, “
Influence of a hemispherical bulge on a flat wall upon the collapse jet of cavitation bubbles
,”
Phys. Fluids
36
,
033302
(
2024
).
6.
X.
Wang
,
Q.
Liang
,
Y.
Yang
,
Y.
Zhang
, and
X.
Zhang
, “
Dynamics of single cavitation bubble collapse jet under particle-wall synergy
,”
Phys. Fluids
36
,
103360
(
2024
).
7.
L. A.
Teran
,
S.
Lain
, and
S. A.
Rodríguez
, “
Synergy effect modelling of cavitation and hard particle erosion: Implementation and validation
,”
Wear
478–479
,
203901
(
2021
).
8.
X.
Wang
,
C.
Zhang
,
H.
Su
,
Y.
Zhang
, and
X.
Zhang
, “
Research on cavitation bubble behaviors between a dual-particle pair
,”
Phys. Fluids
36
,
023310
(
2024
).
9.
M.
Zaresharif
,
F.
Ravelet
,
D. J.
Kinahan
, and
A.
Khojasteh
, “
Cavitation control using passive flow control techniques
,”
Phys. Fluids
33
,
121301
(
2021
).
10.
Y.
Sun
,
Y.
Du
,
Z.
Yao
,
Y.
Zhang
, and
H.
Su
, “
The effect of surface geometry of solid wall on the collapse of a cavitation bubble
,”
J. Fluids Eng.
144
,
071402
(
2022
).
11.
Y.
Zhu
,
J.
Zou
,
W. L.
Zhao
,
X. F.
Chen
, and
H.
Wang
, “
A study on surface topography in cavitation erosion tests of AlSi10Mg
,”
Tribol. Int.
102
,
419
428
(
2016
).
12.
J.
Yu
,
X.
Wang
,
J.
Hu
,
X.
Zhang
, and
Y.
Zhang
, “
Laser-induced cavitation bubble near boundaries
,”
J. Hydrodyn.
35
,
858
875
(
2023
).
13.
J.
Yu
,
X.
Wang
,
J.
Shen
,
Y.
Zhang
, and
X.
Zhang
, “
Physics of cavitation near particles
,”
J. Hydrodyn.
36
,
102
118
(
2024
).
14.
J.
Yu
,
J.
Hu
,
Y.
Liu
,
X.
Zhang
, and
Y.
Zhang
, “
Numerical investigations of the interactions between bubble induced shock waves and particle based on OpenFOAM
,”
J. Hydrodyn.
36
,
355
(
2024
).
15.
O.
Lindau
and
W.
Lauterborn
, “
Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall
,”
J. Fluid Mech.
479
,
327
348
(
2003
).
16.
Y.
Mao
,
Y.
Peng
, and
J.
Zhang
, “
Study of cavitation bubble collapse near a wall by the modified lattice Boltzmann method
,”
Water
10
,
1439
(
2018
).
17.
X.
He
,
J.
Zhang
, and
W.
Xu
, “
Study of cavitation bubble collapse near a rigid boundary with a multi-relaxation-time pseudo-potential lattice Boltzmann method
,”
AIP Adv.
10
,
035315
(
2020
).
18.
Y. X.
Yang
,
Q. X.
Wang
, and
T. S.
Keat
, “
Dynamic features of a laser-induced cavitation bubble near a solid boundary
,”
Ultrason. Sonochem.
20
,
1098
1103
(
2013
).
19.
C.
Lechner
,
W.
Lauterborn
,
M.
Koch
, and
R.
Mettin
, “
Jet formation from bubbles near a solid boundary in a compressible liquid: Numerical study of distance dependence
,”
Phys. Rev. Fluids
5
,
093604
(
2020
).
20.
C.
Lechner
,
W.
Lauterborn
,
M.
Koch
, and
R.
Mettin
, “
Fast, thin jets from bubbles expanding and collapsing in extreme vicinity to a solid boundary: A numerical study
,”
Phys. Rev. Fluids
4
,
021601
(
2019
).
21.
F.
Reuter
and
C. D.
Ohl
, “
Supersonic needle-jet generation with single cavitation bubbles
,”
Appl. Phys. Lett.
118
,
134103
(
2021
).
22.
S.
Li
,
S. P.
Wang
, and
A. M.
Zhang
, “
Bubble jet impact on a rigid wall of different stand-off parameters
,” in
IOP Conference Series: Materials Science and Engineering
(
IOP Publishing
,
2015
), Vol.
72
, p.
022010
.
23.
H.
Zhang
,
Z.
Lu
,
P.
Zhang
,
L.
Bai
, and
L.
Jiang
, “
Experimental and numerical investigation of bubble oscillation and jet impact near a solid boundary
,”
Opt. Laser Technol.
138
,
106606
(
2021
).
24.
Y. L.
Liu
,
S. P.
Wang
, and
A. M.
Zhang
, “
Interaction between bubble and air-backed plate with circular hole
,”
Phys. Fluids
28
,
062105
(
2016
).
25.
B.
Karri
,
S. W.
Ohl
,
E.
Klaseboer
,
B. C.
Khoo
, and
C. D.
Ohl
, “
Jets and sprays arising from a spark-induced oscillating bubble near a plate with a hole
,”
Phys. Rev. E
86
,
036309
(
2012
).
26.
H.
Yu
,
X.
Zhang
,
Y.
Liu
,
Y.
Zhang
,
D.
Zhang
, and
Z.
Wang
, “
Mechanism and characteristics analysis of circulatory cavitation erosion in hydraulic concrete based on laser-induced bubble technology
,”
Constr. Build. Mater.
447
,
138182
(
2024
).
27.
M.
Shan
,
F.
Shu
,
Y.
Yang
,
Y.
Zhang
, and
X.
Wang
, “
Morphological analysis of a collapsing cavitation bubble near a solid wall with complex geometry
,”
Appl. Sci.
13
,
1832
(
2023
).
28.
B. B.
Li
,
W.
Jia
,
H. C.
Zhang
, and
Q. X.
Zhang
, “
Investigation on the collapse behavior of a cavitation bubble near a conical rigid boundary
,”
Shock Waves
24
,
317
324
(
2014
).
29.
D.
Fuster
and
S.
Popinet
, “
An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension
,”
J. Comput. Phys.
374
,
752
768
(
2018
).
30.
Q. T.
Nguyen
,
V. T.
Nguyen
,
T. H.
Phan
,
T. N.
Le
, and
C. D.
Ohl
, “
Numerical study of dynamics of cavitation bubble collapse near oscillating walls
,”
Phys. Fluids
35
,
013306
(
2023
).
31.
J.
Zhang
,
Y.
Du
,
J.
Liu
,
X.
Zhang
, and
Y.
Zhang
, “
Experimental and numerical investigations of the collapse of a laser-induced cavitation bubble near a solid wall
,”
J. Hydrodyn.
34
,
189
199
(
2022
).
32.
J.
Hu
,
Y.
Liu
,
J.
Duan
,
X.
Zhang
, and
Y.
Zhang
, “
Investigations on the jets and shock waves of a cavitation bubble collapsing between a wall and a particle
,”
Phys. Fluids
36
,
033330
(
2024
).
33.
J.
Yin
,
Y.
Zhang
,
J.
Zhu
,
X.
Zhang
, and
Y.
Zhang
, “
An experimental and numerical study on the dynamical behaviors of the rebound cavitation bubble near the solid wall
,”
Int. J. Heat Mass Transfer
177
,
121525
(
2021
).
34.
T.
Wang
and
L.
Chen
, “
Thermodynamic behavior and energy transformation mechanism of the multi-period evolution of cavitation bubbles collapsing near a rigid wall: A numerical study
,”
Energies
16
,
1048
(
2023
).
35.
X.
Sun
,
W.
You
,
X.
Xuan
,
G.
Xia
, and
Z.
Wu
, “
Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications
,”
Chem. Eng. J.
412
,
128600
(
2021
).
36.
J.
Zhu
,
C.
Yao
,
D.
Zhao
, and
X.
Zhang
, “
Extension of the Schnerr–Sauer model for cryogenic cavitation
,”
Eur. J. Mech. B
52
,
1
10
(
2015
).
37.
G. H.
Schnerr
and
J.
Sauer
, “
Physical and numerical modeling of unsteady cavitation dynamics
,” in
Proceedings of 4th International Conference on Multiphase Flow
, New Orleans (
2001
).
38.
W.
Lin
,
T.
Sun
,
H.
Xu
, and
J.
Duan
, “
Cavity evolution of ventilated vehicle launch under a rolling condition
,”
Phys. Fluids
35
,
113318
(
2023
).
39.
M.
Koch
,
C.
Lechner
,
F.
Reuter
,
K.
Köhler
,
R.
Mettin
, and
W.
Lauterborn
, “
Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM
,”
Comput. Fluids
126
,
71
90
(
2016
).
40.
J.
Huang
,
J.
Wang
,
J.
Huang
,
Y.
Zhang
, and
X.
Zhang
, “
Effects of wall wettability on vortex flows induced by collapses of cavitation bubbles: A numerical study
,”
Phys. Fluids
35
,
087122
(
2023
).
41.
A. M.
Zhang
,
S. M.
Li
,
R. Z.
Xu
,
S. C.
Pei
,
S.
Li
, and
Y. L.
Liu
, “
A theoretical model for compressible bubble dynamics considering phase transition and migration
,”
J. Fluid Mech.
999
,
A58
(
2024
).
42.
C. J.
Greenshields
,
OpenFOAM v10 User Guide
(
The OpenFOAM Foundation
,
London, UK
,
2022
).
43.
B. R.
Shin
,
Y.
Iwata
, and
T.
Ikohagi
, “
Numerical simulation of unsteady cavitating flows using a homogenous equilibrium model
,”
Comput. Mech.
30
,
388
395
(
2003
).
44.
J.
Yin
,
Y.
Zhang
,
D.
Gong
,
X.
Zhang
, and
Y.
Zhang
, “
Dynamics of a laser-induced cavitation bubble near a cone: An experimental and numerical study
,”
Fluids
8
,
220
(
2023
).
45.
M.
Zhang
,
Q.
Chang
,
X.
Ma
,
W.
Gao
, and
Y.
Wang
, “
Physical investigation of the counterjet dynamics during the bubble rebound
,”
Ultrason. Sonochem.
58
,
104706
(
2019
).
46.
S.
Li
,
R.
Han
, and
A. M.
Zhang
, “
Nonlinear interaction between a gas bubble and a suspended sphere
,”
J. Fluids Struct.
65
,
333
354
(
2016
).
47.
J.
Hu
,
Y.
Liu
,
Y.
Liu
,
X.
Zhang
, and
Y.
Zhang
, “
Numerical investigation of cavitation bubble jet dynamics near a spherical particle
,”
Symmetry
15
,
1655
(
2023
).
48.
S.
Li
,
B. C.
Khoo
,
A. M.
Zhang
, and
S.
Wang
, “
Bubble-sphere interaction beneath a free surface
,”
Ocean Eng.
169
,
469
483
(
2018
).
You do not currently have access to this content.