Hemodynamics factors influenced by blood flow significantly affect aneurysms growth and rupture. While most studies focus on the temporal effects of blood flow, the potential impact of non-local spatial effects is often overlooked. However, previous research suggests that jet flow from proximal stenosis can lead to long-range (non-local) redistribution of wall shear stress at aneurysm initiation sites. This study employs a non-local spatial fractional derivative non-Newtonian fluid model to characterize the pseudoplastic behavior of blood and analyze flow in stenosis and aneurysmal arteries. Results show that the fractional derivative order (non-local parameter) can serve as an index to characterize cholesterol-rich blood in clinical diagnostics. Strong shear-thinning property of blood characterized by higher-order fractional derivative model reduces viscosity under high shear rates, leading to accelerated blood flow and increased wall shear stress. Subsequently, the increasement of wall shear stress gradient in regions of vascular stenosis and aneurysms, potentially raises the risk of aneurysm rupture in degenerated aneurysm walls.

1.
C. A.
Holmstedt
,
T. N.
Turan
, and
M. I.
Chimowitz
, “
Atherosclerotic intracranial arterial stenosis: Risk factors, diagnosis, and treatment
,”
Lancet Neurol.
12
,
1106
(
2013
).
2.
J.
Gutierrez
,
T. N.
Turan
,
B. L.
Hoh
, and
M. I.
Chimowitz
, “
Intracranial atherosclerotic stenosis: Risk factors, diagnosis, and treatment
,”
Lancet Neurol.
21
,
355
(
2022
).
3.
L.
Campo-Deaño
,
M. S. N.
Oliveira
, and
F. T.
Pinho
, “
A review of computational hemodynamics in middle cerebral aneurysms and rheological models for blood flow
,”
Appl. Mech. Rev.
67
,
030801
(
2015
).
4.
O.
Leone
,
A.
Corsini
,
D.
Pacini
,
B.
Corti
,
M.
Lorenzini
,
V.
Laus
,
A.
Foà
,
M. L. B.
Reggiani
,
L.
Di Marco
, and
C.
Rapezzi
, “
The complex interplay among atherosclerosis, inflammation, and degeneration in ascending thoracic aortic aneurysms
,”
J. Thorac. Cardiovasc. Surg.
160
,
1434
(
2020
).
5.
O.
Mutlu
,
H. E.
Salman
,
H.
Al-Thani
,
A.
El-Menyar
,
U. A.
Qidwai
, and
H. C.
Yalcin
, “
How does hemodynamics affect rupture tissue mechanics in abdominal aortic aneurysm: Focus on wall shear stress derived parameters, time-averaged wall shear stress, oscillatory shear index, endothelial cell activation potential, and relative residence time
,”
Comput. Biol. Med.
154
,
106609
(
2023
).
6.
N.
Lv
,
C.
Karmonik
,
S.
Chen
,
X.
Wang
,
Y.
Fang
,
Q.
Huang
, and
J.
Liu
, “
Wall enhancement, hemodynamics, and morphology in unruptured intracranial aneurysms with high rupture risk
,”
Transl. Stroke Res.
11
,
882
(
2020
).
7.
Z.
Tian
,
X.
Li
,
C.
Wang
,
X.
Feng
,
K.
Sun
,
Y.
Tu
,
H.
Su
,
X.
Yang
, and
C.
Duan
, “
Association between aneurysmal hemodynamics and rupture risk of unruptured intracranial aneurysms
,”
Front. Neurol.
13
,
818335
(
2022
).
8.
C.
Bilgi
and
K.
Atalık
, “
Effects of blood viscoelasticity on pulsatile hemodynamics in arterial aneurysms
,”
J. Non-Newtonian Fluid Mech.
279
,
104263
(
2020
).
9.
G.
Alotta
,
M.
Di Paola
,
F. P.
Pinnola
, and
M.
Zingales
, “
A fractional nonlocal approach to nonlinear blood flow in small-lumen arterial vessels
,”
Meccanica
55
,
891
(
2020
).
10.
K.
Kono
,
T.
Fujimoto
, and
T.
Terada
, “
Proximal stenosis may induce initiation of cerebral aneurysms by increasing wall shear stress and wall shear stress gradient
,”
Numer. Methods Biomed. Eng.
30
,
942
(
2014
).
11.
K.
Kono
,
O.
Masuo
,
N.
Nakao
, and
H.
Meng
, “
De novo cerebral aneurysm formation associated with proximal stenosis
,”
Neurosurgery
73
,
E1080
(
2013
).
12.
C. S.
Drapaca
, “
Poiseuille flow of a non-local non-Newtonian fluid with wall slip: A first step in modeling cerebral microaneurysms
,”
Fractal Fract.
2
,
9
(
2018
).
13.
L.
Terme
,
Non-Newtonian Fluid Mechanics and Complex Flows
(
Springer
,
Italy
,
2016
).
14.
S. A.
Wajihah
and
D. S.
Sankar
, “
A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries
,”
Arch. Appl. Mech.
93
,
1771
(
2023
).
15.
H. G.
Sun
,
Y. H.
Jiang
,
Y.
Zhang
, and
L. J.
Jiang
, “
A review of constitutive models for non-Newtonian fluids
,”
Fractional Calculus Appl. Anal.
27
,
1483
(
2024
).
16.
J.
Janela
,
A.
Moura
, and
A.
Sequeira
, “
A 3D non-Newtonian fluid–structure interaction model for blood flow in arteries
,”
J. Comput. Appl. Math.
234
,
2783
(
2010
).
17.
P. S.
Stephanou
, “
A constitutive hemorheological model addressing both the deformability and aggregation of red blood cells
,”
Phys. Fluids
32
,
103103
(
2020
).
18.
A.
Mantegazza
,
D.
De Marinis
, and
M. D.
de Tullio
, “
Red blood cell transport in bounded shear flow: On the effects of cell viscoelastic properties
,”
Comput. Method. Appl. Mech. Eng.
428
,
117088
(
2024
).
19.
A.
Zaman
,
N.
Ali
,
O.
Anwar Bég
, and
M.
Sajid
, “
Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery
,”
Int. J. Heat Mass Transfer
95
,
1084
(
2016
).
20.
H.
Xie
and
Y.
Zhang
, “
The effect of red blood cells on blood heat transfer
,”
Int. J. Heat Mass Transfer
113
,
840
(
2017
).
21.
A.
Hussain
,
M. N. R.
Dar
,
R.
Kanwal
,
W. K.
Cheema
, and
L.
Sarwar
, “
Unraveling the hemodynamic impact: Computational insights into blood flow and heat transport dynamics in triangle-shaped stenotic aneurysmal arteries
,”
Int. Commun. Heat Mass Transfer
155
,
107520
(
2024
).
22.
A.
Zupančič Valant
,
L.
Žiberna
,
Y.
Papaharilaou
,
A.
Anayiotos
, and
G. C.
Georgiou
, “
The influence of temperature on rheological properties of blood mixtures with different volume expanders—implications in numerical arterial hemodynamics simulations
,”
Rheol. Acta
50
,
389
(
2011
).
23.
C.
Abugattas
,
A.
Aguirre
,
E.
Castillo
, and
M.
Cruchaga
, “
Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models
,”
Appl. Math. Modell.
88
,
529
(
2020
).
24.
A.
Farina
,
L.
Fusi
,
A.
Mikelić
,
G.
Saccomandi
,
A.
Sequeira
,
E. F.
Toro
, and
A.
Sequeira
, “
Hemorheology: Non-Newtonian constitutive models for blood flow simulations
,” in
Non-Newtonian Fluid Mechanics and Complex Flows
(
Springer
,
Levico Terme, Italy
,
2018
).
25.
V.
Kannojiya
,
A. K.
Das
, and
P. K.
Das
, “
Simulation of blood as fluid: A review from rheological aspects
,”
IEEE Rev. Biomed. Eng.
14
,
327
(
2021
).
26.
D.
Singh
and
S.
Singh
, “
Computational analysis of patient-specific pulsatile blood flow: The influence of non-Newtonian models on wall shear stress assessment
,”
Phys. Fluids
36
,
013123
(
2024
).
27.
J.
Vimmr
,
A.
Jonasova
, and
O.
Bublik
, “
Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses
,”
Numer. Methods Biomed. Eng.
29
,
1057
(
2013
).
28.
J.
Gao
,
Y.
Zhang
,
Y.
Ma
,
Q.
Wang
, and
Y.
Bai
, “
Analysis of physiological pulsating flow of fractional Maxwell fluid in a locally narrow artery
,”
Phys. Fluids
35
,
113105
(
2023
).
29.
H. G.
Sun
,
Y.
Zhang
,
S.
Wei
,
J. T.
Zhu
, and
W.
Chen
, “
A space fractional constitutive equation model for non-Newtonian fluid flow
,”
Commun. Nonlinear Sci. Numer. Simul.
62
,
409
(
2018
).
30.
A.
Hanyga
and
M.
Seredyńska
, “
Spatially fractional-order viscoelasticity, non-locality, and a new kind of anisotropy
,”
J. Math. Phys.
53
,
052902
(
2012
).
31.
I.
Shahzadi
,
F. Z.
Duraihem
,
S.
Ijaz
,
C. S. K.
Raju
, and
S.
Saleem
, “
Blood stream alternations by mean of electroosmotic forces of fractional ternary nanofluid through the oblique stenosed aneurysmal artery with slip conditions
,”
Int. Commun. Heat Mass Transfer
143
,
106679
(
2023
).
32.
N.
Ali Shah
,
D.
Vieru
, and
C.
Fetecau
, “
Effects of the fractional order and magnetic field on the blood flow in cylindrical domains
,”
J. Magn. Magn. Mater.
409
,
10
(
2016
).
33.
A.
Ali
and
S.
Das
, “
Applications of neuro-computing and fractional calculus to blood streaming conveying modified trihybrid nanoparticles with interfacial nanolayer aspect inside a diseased ciliated artery under electroosmotic and Lorentz forces
,”
Int. Commun. Heat Mass Transfer
152
,
107313
(
2024
).
34.
O. U.
Mehmood
,
S.
Bibi
,
D. F.
Jamil
,
S.
Uddin
,
R.
Roslan
, and
M. K. M.
Akhir
, “
Concentric ballooned catheterization to the fractional non-Newtonian hybrid nano blood flow through a stenosed aneurysmal artery with heat transfer
,”
Sci. Rep.
11
,
20379
(
2021
).
35.
K.
Han
,
S.
Ma
,
J.
Sun
,
M.
Xu
,
X.
Qi
,
S.
Wang
,
L.
Li
, and
X.
Li
, “
In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus
,”
Biophys. J.
122
,
1445
(
2023
).
36.
L.
Moreno
,
F.
Calderas
,
G.
Sanchez-Olivares
,
L.
Medina-Torres
,
A.
Sanchez-Solis
, and
O.
Manero
, “
Effect of cholesterol and triglycerides levels on the rheological behavior of human blood
,”
Korea-Aust. Rheol. J.
27
(
1
),
1
10
(
2015
).
37.
A. J.
Apostolidis
and
A. N.
Beris
, “
The effect of cholesterol and triglycerides on the steady state shear rheology of blood
,”
Rheol. Acta
55
,
497
(
2015
).
38.
A.
Tofighi
, “
The intrinsic damping of the fractional oscillator
,”
Physica A
329
,
29
(
2003
).
39.
G.
Jumarie
, “
The Minkowski's space–time is consistent with differential geometry of fractional order
,”
Phys. Lett. A
363
,
5
11
(
2007
).
40.
A. C.
Burton
, Physiology and Biophysics of the Circulation (Year Book Medical Publishers, Chicago, 1965)
41.
Poonam
,
B. K.
Sharma
,
C.
Kumawat
, and
K.
Vafai
, “
Computational biomedical simulations of hybrid nanoparticles (Au-Al2O3/blood-mediated) transport in a stenosed and aneurysmal curved artery with heat and mass transfer: Hematocrit dependent viscosity approach
,”
Chem. Phys. Lett.
800
,
139666
(
2022
).
42.
S.
Priyadharshini
and
R.
Ponalagusamy
, “
Mathematical modelling for pulsatile flow of Casson fluid along with magnetic nanoparticles in a stenosed artery under external magnetic field and body acceleration
,”
Neural Comput. Appl.
31
,
813
(
2019
).
43.
J. M.
Dolan
,
J.
Kolega
, and
H.
Meng
, “
High wall shear stress and spatial gradients in vascular pathology: A review
,”
Ann. Biomed. Eng.
41
,
1411
(
2013
).
44.
G.
Zhou
,
Y.
Zhu
,
Y.
Yin
,
M.
Su
, and
M.
Li
, “
Association of wall shear stress with intracranial aneurysm rupture: Systematic review and meta-analysis
,”
Sci. Rep.
7
,
5331
(
2017
).
45.
H.
Meng
,
V.
Tutino
,
J.
Xiang
, and
A.
Siddiqui
, “
High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis
,”
Am. J. Neuroradiol.
35
,
1254
(
2014
).
46.
H. G.
Morales
,
I.
Larrabide
,
A. J.
Geers
,
M. L.
Aguilar
, and
A. F.
Frangi
, “
Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms
,”
J. Biomech.
46
,
2158
(
2013
).
47.
J.
Xiang
,
M.
Tremmel
,
J.
Kolega
,
E. I.
Levy
,
S. K.
Natarajan
, and
H.
Meng
, “
Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk
,”
J. NeuroInterventional Surg.
4
,
351
(
2012
).
48.
C. M.
Mota
and
C. J.
Madden
, “
Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands
,”
Nat. Rev. Neurosci.
25
,
143
(
2024
).
49.
Z.
Chen
,
P.
Liu
,
X.
Xia
,
C.
Cao
,
Z.
Ding
, and
X.
Li
, “
Low ambient temperature exposure increases the risk of ischemic stroke by promoting platelet activation
,”
Sci. Total Environ.
912
,
169235
(
2024
).
50.
Y.
Wang
,
K.
Zhu
,
J.
Wang
, and
L.
Yang
, “
Numerical simulation of heat induced flow-mediated dilation of blood vessels
,”
J. Therm. Biol.
84
,
323
(
2019
).
51.
T.
Iba
,
J.
Helms
,
M.
Levi
, and
J. H.
Levy
, “
Thromboinflammation in acute injury: Infections, heatstroke, and trauma
,”
J. Thromb. Haemostasis
22
,
7
22
(
2024
).
52.
J. R.
Cebral
,
F.
Mut
,
J.
Weir
, and
C. M.
Putman
, “
Association of hemodynamic characteristics and cerebral aneurysm rupture
,”
Am. J. Neuroradiol.
32
,
264
(
2011
).
You do not currently have access to this content.