Based on the in situ measurements of the Earth's radiation belt electrons as well as the historical solar wind and geomagnetic activity indices during the Van Allen Probe era (from 2012 to 2019), we constructed a prediction model of electron phase space density (PSD) using a machine learning method, i.e., the artificial neural network. Compared with previous study, the present model broadens the predicted energies to 31 channels (μ = 101–104 MeV/G, μ is the first adiabatic invariant), with K = 0.08 G1/2RE and K = 0.17 G1/2RE (the second adiabatic invariant) at L* (the third adiabatic invariant) ranging from 2.0 to 5.5. In the central part of the outer belt (L* = 3.0–5.5), the model achieves outstanding performance for source, seed, and relativistic electrons at μ = 102–103.5 MeV/G, with overall root mean square errors <0.155, prediction efficiencies >0.982, and Pearson correlation coefficients >0.981 for both K = 0.08 G1/2RE and K = 0.17 G1/2RE, respectively. Moreover, 90.23% of samples present an observation–prediction difference of less than 0.2 order of magnitude, 98.76% present a difference of less than 0.5 order, and 99.71% present a difference of less than one order. Furthermore, it can well reproduce the energy spectral distributions of the electron PSD during different stages of a typical geomagnetic storm event. The present model provides a critical foundation for establishing an advanced predictive framework for space weather extreme events.

1.
X.
Li
,
D. N.
Baker
,
S. G.
Kanekal
,
M.
Looper
, and
M.
Temerin
, “
Long term measurements of radiation belts by SAMPEX and their variations
,”
Geophys. Res. Lett.
28
(
20
),
3827
3830
, https://doi.org/10.1029/2001GL013586 (
2001
).
2.
G. D.
Reeves
,
K. L.
McAdams
,
R. H. W.
Friedel
, and
T. P.
O'Brien
, “
Acceleration and loss of relativistic electrons during geomagnetic storms
,”
Geophys. Res. Lett.
30
(
10
),
1529
, https://doi.org/10.1029/2002GL016513 (
2003
).
3.
D. N.
Baker
,
S. G.
Kanekal
,
V. C.
Hoxie
,
M. G.
Henderson
,
X.
Li
,
H. E.
Spence
,
S. R.
Elkington
,
R. H.
Friedel
,
J.
Goldstein
,
M. K.
Hudson
,
G. D.
Reeves
,
R. M.
Thorne
,
C. A.
Kletzing
, and
S. G.
Claudepierre
, “
A long-lived relativistic electron storage ring embedded in Earth's outer Van Allen belt
,”
Science
340
(
6129
),
186
190
(
2013
).
4.
R. M.
Thorne
,
B.
Ni
,
X.
Tao
,
R. B.
Horne
, and
N. P.
Meredith
, “
Scattering by chorus waves as the dominant cause of diffuse auroral precipitation
,”
Nature
467
(
7318
),
943
946
(
2010
).
5.
B.
Ni
,
Z.
Zou
,
X.
Gu
,
C.
Zhou
,
R. M.
Thorne
,
J.
Bortnik
,
R.
Shi
,
Z.
Zhao
,
D. N.
Baker
,
S. G.
Kanekal
,
H. E.
Spence
,
G. D.
Reeves
, and
X.
Li
, “
Variability of the pitch angle distribution of radiation belt ultrarelativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations
,”
J. Geophys. Res. Space Phys.
120
(
6
),
4863
4876
, https://doi.org/10.1002/2015JA021065 (
2015
).
6.
Z.
Su
,
H.
Zhu
,
F.
Xiao
,
Q. G.
Zong
,
X. Z.
Zhou
,
H.
Zheng
,
Y.
Wang
,
S.
Wang
,
Y. X.
Hao
,
Z.
Gao
,
Z.
He
,
D. N.
Baker
,
H. E.
Spence
,
G. D.
Reeves
,
J. B.
Blake
, and
J. R.
Wygant
, “
Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons
,”
Nat. Commun.
6
,
10096
(
2015
).
7.
Q. G.
Zong
,
Y. F.
Wang
,
H.
Zhang
,
S. Y.
Fu
,
H.
Zhang
,
C. R.
Wang
,
C. J.
Yuan
, and
I.
Vogiatzis
, “
Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves
,”
J. Geophys. Res. Space Phys.
117
(
A11
),
A11206
, https://doi.org/10.1029/2012JA018024 (
2012
).
8.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
Z.
Gao
,
G.
Wang
,
Z.
Zhao
,
X.
Feng
, and
F.
Wei
, “
Two-step dropouts of radiation belt electron phase space density induced by a magnetic cloud event
,”
Astrophys. J.
895
(
1
),
L24
(
2020
).
9.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
J.
Wei
,
W.
Zhou
,
H.
Huang
, and
Y.
Xie
, “
Competition between the source and loss processes of radiation belt source, seed, and relativistic electrons induced by a magnetic cloud event
,”
Phys. Fluids
36
(
2
),
026603
(
2024
).
10.
J. E.
Borovsky
,
D. T.
Welling
,
M. F.
Thomsen
, and
M. H.
Denton
, “
Long-lived plasmaspheric drainage plumes: Where does the plasma come from?
,”
J. Geophys. Res. Space Phys.
119
(
8
),
6496
6520
, https://doi.org/10.1002/2014JA020228 (
2014
).
11.
B.
Ni
,
J.
Liang
,
R. M.
Thorne
,
V.
Angelopoulos
,
R. B.
Horne
,
M.
Kubyshkina
,
E.
Spanswick
,
E. F.
Donovan
, and
D.
Lummerzheim
, “
Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: A detailed case study
,”
J. Geophys. Res. Space Phys.
117
(
A1
),
A01218
, https://doi.org/10.1029/2011JA017095 (
2012
).
12.
Z.
Zou
,
H.
Huang
,
J.
Hu
,
W.
San
, and
Q.
Yuan
, “
Prompt extinction of bump-on-tail energy spectra for radiation belt electron phase space density
,”
Phys. Fluids
36
(
5
),
056608
(
2024
).
13.
J.
Hu
,
Z.
Zou
,
H.
Huang
,
W.
San
,
Q.
Yuan
, and
B.
Zhu
, “
Global features of energetic proton pancake pitch angle distributions in the Earth's radiation belt
,”
Phys. Fluids
36
(
9
),
096607
(
2024
).
14.
D. L.
Turner
,
Y.
Shprits
,
M.
Hartinger
, and
V.
Angelopoulos
, “
Explaining sudden losses of outer radiation belt electrons during geomagnetic storms
,”
Nat. Phys.
8
(
3
),
208
212
(
2012
).
15.
F.
Xiao
,
C.
Yang
,
Z.
Su
,
Q.
Zhou
,
Z.
He
,
Y.
He
,
D. N.
Baker
,
H. E.
Spence
,
H. O.
Funsten
, and
J. B.
Blake
, “
Wave-driven butterfly distribution of Van Allen belt relativistic electrons
,”
Nat. Commun.
6
,
1
9
(
2015
).
16.
D.
Wang
,
Y. Y.
Shprits
,
I. S.
Zhelavskaya
,
F.
Effenberger
,
A. M.
Castillo
,
A. Y.
Drozdov
,
N. A.
Aseev
, and
S.
Cervantes
, “
The effect of plasma boundaries on the dynamic evolution of relativistic radiation belt electrons
,”
J. Geophys. Res. Space Phys.
125
(
5
),
e2019JA027422
, https://doi.org/10.1029/2019JA027422 (
2020
).
17.
Y. Y.
Shprits
,
A. Y.
Drozdov
,
M.
Spasojevic
,
A. C.
Kellerman
,
M. E.
Usanova
,
M. J.
Engebretson
,
O. V.
Agapitov
,
I. S.
Zhelavskaya
,
T. J.
Raita
,
H. E.
Spence
,
D. N.
Baker
,
H.
Zhu
, and
N. A.
Aseev
, “
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts
,”
Nat. Commun.
7
,
12883
(
2016
).
18.
Y. Y.
Shprits
,
D.
Subbotin
,
A.
Drozdov
,
M. E.
Usanova
,
A.
Kellerman
,
K.
Orlova
,
D. N.
Baker
,
D. L.
Turner
, and
K. C.
Kim
, “
Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts
,”
Nat. Phys.
9
(
11
),
699
703
(
2013
).
19.
B.
Ni
,
Y.
Shprits
,
T.
Nagai
,
R.
Thorne
,
Y.
Chen
,
D.
Kondrashov
, and
H.
Kim
, “
Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations
,”
J. Geophys. Res. Space Phys.
114
(
A5
),
A05208
, https://doi.org/10.1029/2008JA013933 (
2009
).
20.
J.
Bortnik
and
R. M.
Thorne
, “
Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves
,”
J. Geophys. Res. Space Phys.
115
(
A7
),
A07213
, https://doi.org/10.1029/2010JA015283 (
2010
).
21.
B.
Ni
,
R.
Thorne
,
J.
Liang
,
V.
Angelopoulos
,
C.
Cully
,
W.
Li
,
X.
Zhang
,
M.
Hartinger
,
O.
Le Contel
, and
A.
Roux
, “
Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS
,”
Geophys. Res. Lett.
38
(
17
),
17105
, https://doi.org/10.1029/2011GL048793 (
2011
).
22.
D. L.
Turner
,
E. K. J.
Kilpua
,
H.
Hietala
,
S. G.
Claudepierre
,
T. P.
O'Brien
,
J. F.
Fennell
,
J. B.
Blake
,
A. N.
Jaynes
,
S.
Kanekal
,
D. N.
Baker
,
H. E.
Spence
,
J.-F.
Ripoll
, and
G. D.
Reeves
, “
The response of earth's electron radiation belts to geomagnetic storms: Statistics from the Van Allen probes era including effects from different storm drivers
,”
J. Geophys. Res. Space Phys.
124
(
2
),
1013
1034
, https://doi.org/10.1029/2018JA026066 (
2019
).
23.
Q.
Zong
,
Y.
Hao
, and
Y.
Wang
, “
Ultra low frequency waves impact on radiation belt energetic particles
,”
Sci. China Ser. E/Technol. Sci.
52
,
3698
3708
(
2009
).
24.
J.
Bortnik
and
R. M.
Thorne
, “
The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons
,”
J. Atmos. Sol. Terr. Phys.
69
(
3
),
378
386
(
2007
).
25.
X.
Cao
,
B.
Ni
,
D.
Summers
,
Z.
Zou
,
S.
Fu
, and
W.
Zhang
, “
Bounce resonance scattering of radiation belt electrons by low-frequency hiss: Comparison with cyclotron and Landau resonances
,”
Geophys. Res. Lett.
44
(
19
),
9547
9554
, https://doi.org/10.1002/2017GL075104 (
2017
).
26.
J.
Li
,
J.
Bortnik
,
W.
Li
,
X.
An
,
L. R.
Lyons
,
W. S.
Kurth
,
G. B.
Hospodarsky
,
D. P.
Hartley
,
G. D.
Reeves
,
H. O.
Funsten
,
J. B.
Blake
,
H.
Spence
, and
D. N.
Baker
, “
Unraveling the formation region and frequency of chorus spectral gaps
,”
Geophys. Res. Lett.
49
(
19
),
e2022GL100385
, https://doi.org/10.1029/2022GL100385 (
2022
).
27.
X.
Cao
,
B.
Ni
,
D.
Summers
,
Y. Y.
Shprits
,
X.
Gu
,
S.
Fu
,
Y.
Lou
,
Y.
Zhang
,
X.
Ma
,
W.
Zhang
,
H.
Huang
, and
J.
Yi
, “
Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution
,”
Geophys. Res. Lett.
46
(
2
),
590
598
, https://doi.org/10.1029/2018GL081550 (
2019
).
28.
D.
Summers
, “
Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere
,”
J. Geophys. Res. Space Phys.
110
(
A8
),
A08213
, https://doi.org/10.1029/2005JA011159 (
2005
).
29.
J. M.
Albert
, “
Refractive index and wavenumber properties for cyclotron resonant quasilinear diffusion by cold plasma waves
,”
Phys. Plasmas
14
(
7
),
072901
(
2007
).
30.
M.
Hua
,
W.
Li
,
B.
Ni
,
Q.
Ma
,
A.
Green
,
X.
Shen
,
S. G.
Claudepierre
,
J.
Bortnik
,
X.
Gu
,
S.
Fu
,
Z.
Xiang
, and
G. D.
Reeves
, “
Very-low-frequency transmitters bifurcate energetic electron belt in near-earth space
,”
Nat. Commun.
11
(
1
),
4847
(
2020
).
31.
Z. L.
Gao
,
X. J.
Shang
,
P. B.
Zuo
,
Z. Y.
Zou
,
G.
Wang
,
X. S.
Feng
,
Y.
Wang
,
C. Y.
Guan
, and
F. S.
Wei
, “
Lag-correlated rising tones of electron cyclotron harmonic and whistler-mode upper-band chorus waves
,”
Phys. Plasmas
27
(
6
),
062903
(
2020
).
32.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
F.
Wei
,
Z.
Zhao
,
X.
Cao
,
S.
Fu
, and
X.
Gu
, “
Wave normal angle distribution of fast magnetosonic waves: A survey of Van Allen probes EMFISIS Observations
,”
J. Geophys. Res. Space Phys.
124
(
7
),
5663
5674
, https://doi.org/10.1029/2019JA026556 (
2019
).
33.
Z.
He
,
J.
Yu
,
L.
Chen
,
Z.
Xia
,
W.
Wang
,
K.
Li
, and
J.
Cui
, “
Statistical study on locally generated high-frequency plasmaspheric hiss and its effect on suprathermal electrons: Van Allen Probes Observation and quasi-linear simulation
,”
J. Geophys. Res. Space Phys.
125
(
10
),
e2020JA028526
, https://doi.org/10.1029/2020JA028526 (
2020
).
34.
Z.
He
,
J.
Yu
,
K.
Li
,
N.
Liu
,
Z.
Chen
, and
J.
Cui
, “
A Comparative study on the distributions of incoherent and coherent plasmaspheric hiss
,”
Geophys. Res. Lett.
48
(
7
),
e2021GL092902
, https://doi.org/10.1029/2021GL092902 (
2021
).
35.
D.
Wang
,
Y. Y.
Shprits
,
B.
Haas
, and
A. Y.
Drozdov
, “
Improved lifetime model of energetic electrons due to their interactions with chorus waves
,”
Geophys. Res. Lett.
51
(
19
),
e2023GL107991
, https://doi.org/10.1029/2023GL107991 (
2024
).
36.
J.
Bortnik
,
W.
Li
,
R. M.
Thorne
, and
V.
Angelopoulos
, “
A unified approach to inner magnetospheric state prediction
,”
J. Geophys. Res. Space Phys.
121
(
3
),
2423
2430
, https://doi.org/10.1002/2015JA021733 (
2016
).
37.
J.
Bortnik
,
X.
Chu
,
Q.
Ma
,
W.
Li
,
X.
Zhang
,
R. M.
Thorne
,
V.
Angelopoulos
,
R. E.
Denton
,
C. A.
Kletzing
,
G. B.
Hospodarsky
,
H. E.
Spence
,
G. D.
Reeves
,
S. G.
Kanekal
, and
D. N.
Baker
, “
Chapter 11—Artificial neural networks for determining magnetospheric conditions
,” in
Machine Learning Techniques for Space Weather
, edited by
E.
Camporeale
,
S.
Wing
, and
J. R.
Johnson
(
Elsevier
,
2018
), pp.
279
300
.
38.
X.
Chu
,
D.
Ma
,
J.
Bortnik
,
W. K.
Tobiska
,
A.
Cruz
,
S. D.
Bouwer
,
H.
Zhao
,
Q.
Ma
,
K.
Zhang
,
D. N.
Baker
,
X.
Li
,
H.
Spence
, and
G.
Reeves
, “
Relativistic electron model in the outer radiation belt using a neural network approach
,”
Space Weather Int. J. Res. Appl.
19
(
12
),
e2021SW002808
(
2021
).
39.
Y.
Chen
,
G. D.
Reeves
,
X.
Fu
, and
M.
Henderson
, “
PreMevE: New predictive model for megaelectron-volt electrons inside Earth's outer radiation belt
,”
Space Weather
17
(
3
),
438
454
, https://doi.org/10.1029/2018SW002095 (
2019
).
40.
R.
Pires de Lima
,
Y.
Chen
, and
Y.
Lin
, “
Forecasting megaelectron-volt electrons inside Earth's outer radiation belt: PreMevE 2.0 based on supervised machine learning algorithms
,”
Space Weather
18
,
1
23
, https://doi.org/10.1029/2019SW002399 (
2020
).
41.
S. G.
Claudepierre
and
T. P.
O'Brien
, “
Specifying high-altitude electrons using low-altitude LEO systems: The SHELLS model,” SPACE weather
,”
Int. J. Res. Appl.
18
(
3
),
e2019SW002402
(
2020
).
42.
Q.
Yuan
,
Z.
Zou
,
W.
San
,
J.
Hu
, and
B.
Zhu
, “
Predicting radiation belt relativistic electron flux from sub-relativistic electron fluxes using machine learning
,”
Phys. Fluids
37
(
2
),
026618
(
2025
).
43.
Z.
Zou
,
L.
Zhang
,
P.
Zuo
,
W.
San
,
Q.
Yuan
,
B.
Zhu
, and
J.
Hu
, “
Global prediction of sub-relativistic and relativistic electron fluxes in the geosynchronous orbit using artificial neural networks
,”
Phys. Fluids
36
(
12
),
126638
(
2024
).
44.
W.
San
,
Z.
Zou
,
Q.
Yuan
,
J.
Hu
, and
B.
Zhu
, “
Prediction of radiation belt relativistic electron phase space density using artificial neural networks
,”
Phys. Fluids
37
(
1
),
016615
(
2025
).
45.
J. B.
Blake
,
P. A.
Carranza
,
S. G.
Claudepierre
,
J. H.
Clemmons
,
W. R.
Crain
,
Y.
Dotan
,
J. F.
Fennell
,
F. H.
Fuentes
,
R. M.
Galvan
,
J. S.
George
,
M. G.
Henderson
,
M.
Lalic
,
A. Y.
Lin
,
M. D.
Looper
,
D. J.
Mabry
,
J. E.
Mazur
,
B.
McCarthy
,
C. Q.
Nguyen
,
T. P.
O'Brien
,
M. A.
Perez
,
M. T.
Redding
,
J. L.
Roeder
,
D. J.
Salvaggio
,
G. A.
Sorensen
,
H. E.
Spence
,
S.
Yi
, and
M. P.
Zakrzewski
, “
The magnetic electron ion spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft
,”
Space Sci. Rev.
179
,
383
421
(
2013
).
46.
D. N.
Baker
,
S. G.
Kanekal
,
V. C.
Hoxie
,
S.
Batiste
,
M.
Bolton
,
X.
Li
,
S. R.
Elkington
,
S.
Monk
,
R.
Reukauf
,
S.
Steg
,
J.
Westfall
,
C.
Belting
,
B.
Bolton
,
D.
Braun
,
B.
Cervelli
,
K.
Hubbell
,
M.
Kien
,
S.
Knappmiller
,
S.
Wade
,
B.
Lamprecht
,
K.
Stevens
,
J.
Wallace
,
A.
Yehle
,
H. E.
Spence
, and
R.
Friedel
, “
The Relativistic Electron-Proton Telescope (REPT) instrument on Board the Radiation Belt Storm Probes (RBSP) spacecraft: Characterization of Earth's radiation belt high-energy particle populations
,”
Space Sci. Rev.
179
(
1–4
),
337
381
(
2013
).
47.
N. A.
Tsyganenko
and
M. I.
Sitnov
, “
Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms
,”
J. Geophys. Res. Space Phys.
110
,
A03208
, https://doi.org/10.1029/2004JA010798 (
2005
).
48.
Z. Y.
Zou
,
Y. Y.
Shprits
,
B. B.
Ni
,
N. A.
Aseev
,
P. B.
Zuo
, and
F. S.
Wei
, “
An artificial neural network model of electron fluxes in the Earth's central plasma sheet: A THEMIS survey
,”
Astrophys. Space Sci.
365
(
6
),
100
(
2020
).
49.
L.
Olifer
,
S. K.
Morley
,
L. G.
Ozeke
,
I. R.
Mann
,
M. M. H.
Kalliokoski
,
M. G.
Henderson
,
M. R.
Carver
, and
A.
Hoover
, “
Rapid acceleration bursts in the Van Allen radiation belt
,”
J. Geophys. Res. Space Phys.
129
(
5
),
e2024JA032544
, https://doi.org/10.1029/2024JA032544 (
2024
).
You do not currently have access to this content.