This paper presents the development and application of a Transformer deep-learning model to fluid–structure problems induced by shock-turbulent boundary layer interaction. The model was trained on data from experiments conducted at a hypersonic wind tunnel under flow conditions that allowed for a Mach number of 5.3 and a Reynolds number of 19.3×106/m. The shock-wave turbulent boundary layer interaction occurred over an elastic panel. The Transformer was trained using panel deformation measurements taken at different probe locations and the pressure in the cavity beneath the panel. The trained Transformer was subsequently applied to unseen data corresponding to various mean cavity pressures and panel deformations. The capability of the Transformer to capture aeroelastic trends is promising, with interpolation accuracy shown to depend on the volume of data used in training and the location to which the model is applied. The practical implications of this study for aeroelastic research are significant, offering new insights and potential solutions to real-world aeroelastic challenges.

1.
R.
Wiebe
and
S. M.
Spottswood
, “
On the dimension of complex responses in nonlinear structural vibrations
,”
J. Sound Vib.
373
,
192
204
(
2016
).
2.
S. M.
Spottswood
,
T. J.
Beberniss
,
T. G.
Eason
,
R. A.
Perez
,
J. M.
Donbar
,
D. A.
Ehrhardt
, and
Z. B.
Riley
, “
Exploring the response of a thin, flexible panel to shock-turbulent boundary-layer interactions
,”
J. Sound Vib.
443
,
74
89
(
2019
).
3.
A.
Tripathi
,
J.
Gustavsson
,
K.
Shoele
, and
R.
Kumar
, “
Response of a compliant panel to shock boundary layer interaction at Mach 2
,” AIAA Paper No. 2021-0489,
2021
.
4.
K. R.
Brouwer
,
R. A.
Perez
,
T. J.
Beberniss
,
S. M.
Spottswood
, and
D. A.
Ehrhardt
, “
Experiments on a thin panel excited by turbulent flow and shock/boundary-layer interactions
,”
AIAA J.
59
,
2737
2752
(
2021
).
5.
D.
Daub
, “
Experimental investigation of supersonic fluid-structure interaction for future space transportation systems
,” Ph.D. thesis (
DLR/RWTH Aachen University
,
2023
).
6.
K. R.
Brouwer
,
R.
Perez
,
T. J.
Beberniss
, and
S. M.
Spottswood
, “
Aeroelastic experiments and companion computations assessing the impact of impinging shock sweep
,” AIAA Paper No. 2023-0945,
2023
.
7.
K. R.
Brouwer
,
R.
Perez
,
T. J.
Beberniss
, and
S. M.
Spottswood
, “
Surface pressure measurements and predictions in shock-dominated flows
,” AIAA Paper No. 2023-4134,
2023
.
8.
S. J.
Peltier
,
K. R.
Brouwer
,
R.
Perez
,
S. M.
Spottswood
, and
S.
Hammack
, “
Boundary-layer measurements for FTSI systems: Influence of panel flutter on a Mach 2 turbulent boundary-layer
,” AIAA Paper No. 2023-0946,
2023
.
9.
A.
D'Aguanno
,
P.
Quesada Allerhand
,
F. F. J.
Schrijer
, and
B. W.
van Oudheusden
, “
Characterization of shock-induced panel flutter with simultaneous use of DIC and PIV
,”
Exp. Fluids
64
,
15
(
2023
).
10.
L.
Piccolo Serafim
,
M.
Freydin
, and
E. H.
Dowell
, “
Correlation of supersonic wind tunnel measurements with a nonlinear aeroelastic theoretical/computational model of a thin plate
,”
J. Fluids Struct.
122
,
103981
(
2023
).
11.
V. J.
Shinde
,
J. J.
McNamara
, and
D. V.
Gaitonde
, “
Shock wave turbulent boundary layer interaction over a flexible panel
,” AIAA Paper No. 2021-0488,
2021
.
12.
J. D.
Thayer
,
J. J.
McNamara
, and
D. V.
Gaitonde
, “
Unsteady aerodynamic response of a high-speed, separated flow to a deforming cantilever plate
,” AIAA Paper No. 2022-0292,
2022
.
13.
V.
Shinde
,
J.
McNamara
, and
D.
Gaitonde
, “
Dynamic interaction between shock wave turbulent boundary layer and flexible panel
,”
J. Fluids Struct.
113
,
103660
(
2022
).
14.
J.
Hoy
and
I.
Bermejo-Moreno
, “
Fluid–structural coupling of an impinging shock–turbulent boundary layer interaction at Mach 3 over a flexible panel
,”
Flow
2
,
E35
(
2022
).
15.
V. J.
Shinde
,
J. J.
McNamara
, and
D. V.
Gaitonde
, “
One-way response of a flexible panel to shock wave boundary layer interaction
,” AIAA Paper No. 2023-3853,
2023
.
16.
M.
Gao
,
D.
Appel
,
A.
Beck
, and
C.-D.
Munz
, “
A high-order fluid–structure interaction framework with application to shock-wave/turbulent boundary-layer interaction over an elastic panel
,”
J. Fluids Struct.
121
,
103950
(
2023
).
17.
I. W.
Kokkinakis
,
D.
Drikakis
,
S. M.
Spottswood
,
K. R.
Brouwer
, and
Z. B.
Riley
, “
High-speed shock–boundary-layer interaction over deformed surfaces
,”
Phys. Fluids
35
,
106109
(
2023
).
18.
L.
Laguarda
,
S.
Hickel
,
F. F. J.
Schrijer
, and
B. W.
van Oudheusden
, “
Shock-wave/turbulent boundary-layer interaction with a flexible panel
,”
Phys. Fluids
36
,
016120
(
2024
).
19.
I. W.
Kokkinakis
,
D.
Drikakis
,
S.
Michael Spottswood
,
K. R.
Brouwer
, and
Z. B.
Riley
, “
Aeroacoustic loading of impinging supersonic boundary-layer interaction on statically deformed surfaces
,”
AIAA J.
62
,
2520
2518
(
2024
).
20.
K.
Ritos
,
D.
Drikakis
, and
I.
Kokkinakis
, “
Acoustic loading beneath hypersonic transitional and turbulent boundary layers
,”
J. Sound Vib.
441
,
50
62
(
2019
).
21.
K.
Ritos
,
D.
Drikakis
, and
I. W.
Kokkinakis
, “
Wall-pressure spectra models for supersonic and hypersonic turbulent boundary layers
,”
J. Sound Vib.
443
,
90
108
(
2019
).
22.
T. J.
Whalen
,
A. G.
Schöneich
,
S. J.
Laurence
,
B. T.
Sullivan
,
D. J.
Bodony
,
M.
Freydin
,
E. H.
Dowell
, and
G. M.
Buck
, “
Hypersonic fluid–structure interactions in compression corner shock-wave/boundary-layer interaction
,”
AIAA J.
58
,
4090
4105
(
2020
).
23.
L.
Duan
,
M. M.
Choudhari
, and
C.
Zhang
, “
Pressure fluctuations induced by a hypersonic turbulent boundary layer
,”
J. Fluid Mech.
804
,
578
607
(
2016
).
24.
A. K.
Thawait
,
P.
Tandaiya
,
P. C.
Jain
, and
A. J.
Chandy
, “
Numerical investigation of fluid-thermal-structural interaction of deployable control fin in hypersonic flow
,”
Phys. Fluids
36
,
086103
(
2024
).
25.
K.
Ye
,
S.
Chen
,
G.
Li
,
P.
Xie
,
F.
Qu
, and
Z.
Ye
, “
Fluid–structure interaction of panel under swept shock wave/boundary layer interaction
,”
Phys. Fluids
36
,
122138
(
2024
).
26.
J.-J. O. E.
Hoste
,
N. N.
Gibbons
,
T.
Ecker
,
C.
Amato
,
D.
Knight
,
A.
Sattarov
,
O.
Thiry
,
J.-P.
Hickey
,
F. E.
Hizir
,
T.
Köktürk
,
N.
Castelino
,
V.
Viti
,
M. A.
Roldan
,
S.
Qiang
,
J. G.
Coder
,
R. A.
Baurle
, and
J. A.
White
, “
A review of Reynolds-averaged Navier–Stokes modeling for hypersonic large cone–flares
,”
Phys. Fluids
37
,
025193
(
2025
).
27.
K.
Poulinakis
,
D.
Drikakis
,
I. W.
Kokkinakis
, and
S. M.
Spottswood
, “
Deep learning reconstruction of pressure fluctuations in supersonic shock–boundary layer interaction
,”
Phys. Fluids
35
,
076117
(
2023
).
28.
D.
Drikakis
,
I. W.
Kokkinakis
,
D.
Fung
, and
S. M.
Spottswood
, “
Self-supervised transformers for turbulent flow time series
,”
Phys. Fluids
36
,
065113
(
2024
).
29.
D.
Drikakis
,
I. W.
Kokkinakis
,
D.
Fung
, and
S. M.
Spottswood
, “
Generalizability of transformer-based deep learning for multidimensional turbulent flow data
,”
Phys. Fluids
36
,
026102
(
2024
).
30.
J.
Xie
,
Z.
Zhou
,
Y.
Wu
,
T.
Si
, and
X.
Luo
, “
A neural network-based study on the growth rate of a shocked heavy gas layer
,”
Phys. Fluids
37
,
024101
(
2025
).
31.
L.
Chen
and
N.
Thuerey
, “
Deep learning-based predictive modeling of transonic flow over an airfoil
,”
Phys. Fluids
36
,
127106
(
2024
).
32.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
,
J.
Uszkoreit
,
L.
Jones
,
A. N.
Gomez
,
L.
Kaiser
, and
I.
Polosukhin
, “
Attention is all you need
,” in
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17
(
Curran Associates Inc
.,
Red Hook, NY, USA
,
2017
), pp.
6000
6010
.
33.
D.
Daub
,
S.
Willems
,
B.
Esser
, and
A.
Gülhan
, “
Experiments on aerothermal supersonic fluid-structure interaction
,” in
Future Space-Transport-System Components under High Thermal and Mechanical Loads, Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, edited by
N.
Adams
,
W.
Schröder
,
R.
Radespiel
,
O.
Haidn
,
T.
Sattelmayer
,
C.
Stemmer
, and
B.
Weigand
(
Springer
,
2021
), Vol.
146
, pp.
323
339
.
34.
D.
Daub
,
S.
Willems
, and
A.
Gülhan
, “
Experiments on aerothermoelastic fluid-structure interaction in hypersonic flow
,”
J. Sound Vib.
531
,
116714
(
2022
).
35.
S.
Willems
,
A.
Gülhan
, and
J.
Steelant
, “
Experiments on the effect of laminar-turbulent transition on the SWBLI in H2K at Mach 6
,”
Exp. Fluids
56
,
49
(
2015
).
36.
J. L.
Ba
,
J. R.
Kiros
, and
G. E.
Hinton
, “
Layer normalization
,” arXiv:1607.06450 (
2016
).
37.
D. P.
Kingma
and
J.
Ba
,
Adam: A method for stochastic optimization
, in
3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings
, San Diego, CA, edited by
Y.
Bengio
and
Y.
LeCun
,
2015
.
You do not currently have access to this content.