When a solid particle in a fully developed turbulence is larger than the Kolmogorov length scale, the turbulent momentum, transmitted to the particle by random advection past particle of dissipative structures by eddies of order of the particle diameter, tends to reduce the relative velocity between the particle and the fluid. In this work, a corresponding model of the effective drag is discussed and numerically assessed with the experimental study. The velocity gradient in the fluid around the particle is the key-variable of this model, and consequently, the model highlights the role of the flow structure on the particle dynamics. In the simulation of the particle motion in the periodic box turbulence (the latter is resolved by Direct Numerical Simulation—DNS), the model reproduces fairly well the statistical properties known from measurements. First, in accordance with measurements, the simulation shows a universality of normalized distributions of the particle velocity and its fluctuation rate of the particle acceleration and its autocorrelation function—these distributions along the particle trajectory are almost insensitive to parameters of the particle inertia. Thereby, the typical correlation time of the particle acceleration is of the order of the Kolmogorov timescale, i.e., this correlation time is much less than the viscous relaxation time to the low-frequency solicitations in turbulence. In turn, the particle acceleration variance does depend on parameters of the particle inertia, and this dependency is predicted in the simulation consistently with the experiment. Second, the computed distributions of the particle acceleration as well as those of the particle velocity increments at small time lags expose the stretched tails. This is the way in which the intermittency of the flow structure is manifested: the intense velocity gradients in the fluid induce the strong fluctuations of the particle drag. Probability density functions of normalized Voronoï volumes indicate that increasing the particle density and, to a lesser extent, the particle size favors the preferential accumulation of particles above the Kolmogorov size.

1.
M.
Maxey
, “
Simulation methods for particulate flows and concentrated suspensions
,”
Annu. Rev. Fluid Mech.
49
,
171
193
(
2017
).
2.
H.
Homann
and
J.
Bec
, “
Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow
,”
J. Fluid Mech.
651
,
81
91
(
2010
).
3.
M.
Mehrabadi
,
J. A. K.
Horwitz
,
S.
Subramaniam
, and
A.
Mani
, “
A direct comparison of particle-resolved and point-particle methods in decaying turbulence
,”
J. Fluid Mech.
850
,
336
369
(
2018
).
4.
A.
Roccon
,
F.
Zonta
, and
A.
Soldati
, “
Phase-field modeling of complex interface dynamics in drop-laden turbulence
,”
Phys. Rev. Fluids
8
,
090501
(
2023
).
5.
A.
Chiarini
and
M. E.
Rosti
, “
Finite-size inertial spherical particles in turbulence
,”
J. Fluid Mech.
988
,
A17
(
2024
).
6.
C. M.
Tchen
, “
Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid
,” Ph.D. thesis (
Delft University
,
Netherlands
,
1947
).
7.
S.
Corrsin
and
J.
Lumley
, “
On the equation of motion for a particle in turbulent fluid
,”
Appl. Sci. Res.
6
,
114
116
(
1956
).
8.
R. M.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
889
(
1983
).
9.
R.
Gatignol
, “
The Faxen formula for a rigid particle in an unsteady non-uniform stokes flow
,”
J. Méc. Théor. Appl.
9
(
2
),
143
160
(
1983
); available online at http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL83X0344635.
10.
L. D.
Landau
and
E. M.
Lifshitz
,
Course of Theoretical Physics: Fluid Mechanics
(
Pergamon Press
,
1987
), Vol.
6
.
11.
V. R.
Kuznetsov
, “
Effect of turbulence on combustion of atomized liquid fuel
,”
Combust., Explos. Shock Waves
24
,
686
691
(
1988
).
12.
V. R.
Kuznetsov
and
V.
Sabelnikov
,
Turbulence and Combustion
(
Hemisphere Publishing Corporation
,
1990
).
13.
J.
Bec
,
L.
Biferale
,
G.
Boffetta
,
A.
Celani
,
M.
Cencini
,
A.
Lanotte
,
S.
Musacchio
, and
F.
Toschi
, “
Acceleration statistics of heavy particles in turbulence
,”
J. Fluid Mech.
550
,
349
358
(
2006
).
14.
N. M.
Qureshi
,
M.
Bourgoin
,
C.
Baudet
,
A.
Cartellier
, and
Y.
Gagne
, “
Turbulent transport of materials particles: An experimental investigation of finite-size effect
,”
Phys. Rev. Lett.
99
,
184502
(
2007
).
15.
N. M.
Qureshi
,
U.
Arrieta
,
C.
Baudet
,
A.
Cartellier
,
Y.
Gagne
, and
M.
Bourgoin
, “
Acceleration statistics of inertial particles in turbulent flow
,”
Eur. Phys. J. B
66
,
531
536
(
2008
).
16.
M.
Bourgoin
, “
Turbulent transport of particles and fields
,” Habilitation dissertation, Université Jospeh Fourier (
2012
), available online at https://perso.ens-lyon.fr/mickael.bourgoin/wordpress/wp-content/uploads/Documents/HDR_MBourgoin.pdf.
17.
J.
Jiménez
, “
Intermittency and cascades
,”
J. Fluid Mech.
409
,
99
(
2000
).
18.
M.
Gorokhovski
and
R.
Zamansky
, “
Lagrangian simulation of large and small inertial particles in a high Reynolds number flow: Stochastic simulation of subgrid turbulence/particle interactions
,” in
Proceedings of the Summer Program
(
Center for Turbulence Research
,
2014
).
19.
M.
Gorokhovski
and
R.
Zamansky
, “
Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale
,”
Phys. Rev. Fluids
3
(
3
),
034602
(
2018
).
20.
V.
Sabel'nikov
,
A.
Chtab-Desportes
, and
M.
Gorokhovski
, “
New sub-grid stochastic acceleration model in LES of high-Reynolds-number flows
,”
Eur. Phys. J. B
80
,
177
187
(
2011
).
21.
V.
Sabelnikov
,
A.
Barge
, and
M.
Gorokhovski
, “
Stochastic modeling of fluid acceleration on residual scales and dynamics of suspended inertial particles in turbulence
,”
Phys. Rev. Fluids
4
,
044301
(
2019
).
22.
A.
Barge
and
M. A.
Gorokhovski
, “
Acceleration of small heavy particles in homogeneous shear flow: Direct numerical simulation and stochastic modelling of under-resolved intermittent turbulence
,”
J. Fluid Mech.
892
,
A28
(
2020
).
23.
M. A.
Gorokhovski
and
S. K.
Oruganti
, “
Stochastic models for the droplet motion and evaporation in under-resolved turbulent flows at a large Reynolds number
,”
J. Fluid Mech.
932
,
A18
(
2022
).
24.
S.
Corrsin
, “
Progress report on some turbulent diffusion research
,”
Adv. Geophys.
6
,
161
(
1959
). [Database].
25.
R. S.
Rogallo
and
P.
Moin
, “
Numerical simulation of turbulent flows
,”
Annu. Rev. Fluid Mech.
16
,
99
137
(
1984
).
26.
J. B.
Lagaert
,
G.
Balarac
, and
G.-H.
Cottet
, “
Hybrid spectral-particle method for the turbulent transport of a passive scalar
,”
J. Comput. Phys.
260
,
127
142
(
2014
).
27.
A. S.
Monin
and
A. M.
Yaglom
,
Statistical Fluid Mechanics: Mechanics of Turbulence
(
MIT Press
,
1981
).
28.
R.
Zamansky
,
I.
Vinkovic
, and
M.
Gorokhovski
, “
Acceleration statistics of solid particles in turbulent channel flow
,”
Phys. Fluids
23
,
113304
(
2011
).
29.
N.
Mordant
,
J.
Deloura
,
E.
Léveque
,
A.
Arnéodo
, and
J.-F.
Pinton
, “
Long time correlations in Lagrangian dynamics: A key to intermittency in turbulence
,”
Phys. Rev. Lett.
89
,
254502
(
2002
).
30.
D.
Buaria
,
A.
Pumir
,
E.
Bodenschatz
, and
P. K.
Yeung
, “
Extreme velocity gradients in turbulent flows
,”
New J. Phys.
21
,
043004
(
2019
).
31.
S. W.
Coleman
and
J. C.
Vassilicos
, “
A unified sweep-stick mechanism to explain particle clustering in two- and three-dimensional homogeneous, isotropic turbulence
,”
Phys. Fluids
21
,
113301
(
2009
).
32.
Y.
Liu
,
L.
Shen
,
R.
Zamansky
, and
F.
Coletti
, “
Life and death of inertial particle clusters in turbulence
,”
J. Fluid Mech.
902
,
R1
(
2020
).
33.
R.
Monchaux
,
M.
Bourgoin
, and
A.
Cartellier
, “
Preferential concentration of heavy particles: A Voronoï analysis
,”
Phys. Fluids
22
,
113304
(
2010
).
34.
R.
Monchaux
,
M.
Bourgoin
, and
A.
Cartellier
, “
Analyzing preferential concentration and clustering of inertial particles in turbulence
,”
Intl J. Multiphase Flow
40
,
1
18
(
2012
).
35.
E.
Lévêque
and
A.
Naso
, “
Introduction of longitudinal and transverse Lagrangian velocity increments in homogeneous and isotropic turbulence
,”
Europhys. Lett.
108
,
54004
(
2014
).
36.
M. R.
Maxey
, “
The gravitational settling of aerosol-particles in homogeneous turbulence and random flow-fields
,”
J. Fluid Mech.
174
,
441
465
(
1987
).
37.
K. D.
Squires
and
J. K.
Eaton
, “
Preferential concentration of particles by turbulence
,”
Phys. Fluids
3
,
1169
1178
(
1991
).
38.
L.-P.
Wang
and
M. R.
Maxey
, “
Settling velocity and concentration distribution of heavy particles in homogenous isotropic turbulence
,”
J. Fluid Mech.
256
,
27
68
(
1993
).
39.
J. R.
Fessler
,
J. D.
Kulick
, and
J. K.
Eaton
, “
Preferential concentration of heavy particles in a turbulent channel flow
,”
Phys. Fluids
6
,
3742
3749
(
1994
).
40.
S.
Sundaram
and
L. R.
Collins
, “
Collision statistics in an isotropic particle laden turbulent suspension. Part 1. Direct numerical simulations
,”
J. Fluid Mech.
335
,
75
109
(
1997
).
41.
P.
Saffman
and
J.
Turner
, “
Collision statistics in an isotropic particle laden turbulent suspension. Part 1. Direct numerical simulations
,”
J. Fluid Mech.
1
,
16
30
(
1956
).
42.
G.
Falkovich
,
A.
Fouxon
, and
M. G.
Stepanov
, “
Acceleration of rain initiation by cloud turbulence
,”
Nature
419
,
151
154
(
2002
).
43.
L. I.
Zaichik
,
O.
Simonin
, and
V. M.
Alipchenkov
, “
Collision rates of bidisperse inertial particles in isotropic turbulence
,”
Phys. Fluids
18
,
035110
(
2006
).
44.
G.
Falkovich
and
A.
Pumis
, “
Sling effect in collisions of water droplets in turbulent clouds
,”
J. Atmos. Sci.
64
,
4497
4505
(
2007
).
45.
B.
Shortoban
and
S.
Balachandar
, “
Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches
,”
Phys. Fluids
18
,
065105
(
2006
).
46.
P.
Gualtieri
,
F.
Picano
, and
C. M.
Casciola
, “
Anisotropic clustering of inertial particles in homogeneous shear flow
,”
J. Fluid Mech.
629
,
25
39
(
2009
).
You do not currently have access to this content.