This study numerically investigates the spreading of a Newtonian liquid lens over a viscoplastic fluid substrate described by the Herschel–Bulkley–Papanastasiou model. Simulations are performed with the open-source rheoMultiFluidInterFoam solver under the OpenFOAM framework. The droplet spreading process over the viscoplastic fluid is divided into three phases: (i) initial yielding, (ii) main spreading, and (iii) creeping flow. In the first two phases, capillary forces and yield stress govern the droplet dynamics until a quasi-steady state is reached, where all material becomes unyielded according to the Von Mises criterion. The droplet's geometric features in this state differ significantly from those in a purely Newtonian equilibrium. With increasing yield stress, the morphology of droplet resembles that when spreading over a rigid wall. Enhanced shear thinning results in faster yielding and deeper penetration of the lens into the viscoplastic material at early stages. As the spreading parameter is increased, a stronger immersion of the drop into the bottom fluid is observed, and the drop equilibrates to larger aspect ratios. The initial depth of the viscoplastic layer has limited impact on droplet spreading, as the unyielded layer beneath mitigates substrate thickness influence. However, thinner layers cause greater resistance and faster yielding, affecting overall flow dynamics. The viscoplastic behavior, modeled using the regularized Papanastasiou model, allows for finite creeping motion with very high viscosity, leading to a final phase where the material creeps to an equilibrium state similar to that of a Newtonian subphase.

1.
W. D.
Harkins
,
The Physical Chemistry of Surface Films
(
Reinhold
,
New York
,
1952
).
2.
P.
Pujado
and
L.
Scriven
, “
Sessile lenticular configurations: Translationally and rotationally symmetric lenses
,”
J. Colloid Interface Sci.
40
,
82
98
(
1972
).
3.
D.
Hoult
, “
Oil spreading on the sea
,”
Annu. Rev. Fluid Mech.
4
,
341
368
(
1972
).
4.
N. D.
Dipietro
,
C.
Huh
, and
R. G.
Cox
, “
The hydrodynamics of the spreading of one liquid on the surface of another
,”
J. Fluid Mech.
84
,
529
(
1978
).
5.
M.
Foda
and
R. G.
Cox
, “
The spreading of thin liquid films on a water-air interface
,”
J. Fluid Mech.
101
,
33
(
1980
).
6.
J.-F.
Joanny
, “
Wetting of a liquid substrate
,”
Physicochem. Hydrodyn.
9
,
183
(
1987
).
7.
J. G. E.
Fraaije
and
A. M.
Cazabat
, “
Dynamics of spreading on a liquid substrate
,”
J. Colloid Interface Sci.
133
,
452
(
1989
).
8.
J. J.
Kriegsmann
and
M. J.
Miksis
, “
Steady motion of a drop along a liquid interface
,”
SIAM J. Appl. Math.
64
,
18
(
2003
).
9.
R. V.
Craster
and
O. K.
Matar
, “
On the dynamics of liquid lenses
,”
J. Colloid Interface Sci.
303
,
503
(
2006
).
10.
S.
Berg
, “
Marangoni-driven spreading along liquid-liquid interfaces
,”
Phys. Fluids
21
,
032105
(
2009
).
11.
W.
Phillips
, “
On the spreading radius of surface tension driven oil on deep water
,”
Appl. Sci. Res.
57
,
67
80
(
1996
).
12.
P.
Joos
and
J.
Van Hunsel
, “
Spreading of aqueous surfactant solutions on organic liquids
,”
J. Colloid Interface Sci.
106
,
161
167
(
1985
).
13.
T.
Stoebe
,
Z.
Lin
,
R. M.
Hill
,
M. D.
Ward
, and
H. T.
Davis
, “
Superspreading of aqueous films containing trisiloxane surfactant on mineral oil
,”
Langmuir
13
,
7282
7286
(
1997
).
14.
V. M.
Starov
,
A.
de Ryck
, and
M. G.
Velarde
, “
On the spreading of an insoluble surfactant over a thin viscous liquid layer
,”
J. Colloid Interface Sci.
190
,
104
113
(
1997
).
15.
A.
Chauhan
,
T. F.
Svitova
, and
C.
Radke
, “
A sorption-kinetic model for surfactant-driven spreading of aqueous drops on insoluble liquid substrates
,”
J. Colloid Interface Sci.
222
,
221
232
(
2000
).
16.
T. F.
Svitova
,
R. M.
Hill
, and
C.
Radke
, “
Spreading of aqueous trisiloxane surfactant solutions over liquid hydrophobic substrates
,”
Langmuir
17
,
335
348
(
2001
).
17.
A. B.
Afsar-Siddiqui
,
P. F.
Luckham
, and
O. K.
Matar
, “
Unstable spreading of aqueous anionic surfactant solutions on liquid films. 2. Highly soluble surfactant
,”
Langmuir
19
,
703
708
(
2003a
).
18.
A. B.
Afsar-Siddiqui
,
P. F.
Luckham
, and
O. K.
Matar
, “
Unstable spreading of aqueous anionic surfactant solutions on liquid films. Part 1. Sparingly soluble surfactant
,”
Langmuir
19
,
696
702
(
2003b
).
19.
K. S.
Lee
and
V. M.
Starov
, “
Spreading of surfactant solutions over thin aqueous layers: Influence of solubility and micelles disintegration
,”
J. Colloid Interface Sci.
314
,
631
642
(
2007
).
20.
R.
Stocker
and
J. W. M.
Bush
, “
Spontaneous oscillations of a sessile lens
,”
J. Fluid Mech.
583
,
465
475
(
2007
).
21.
X.
Wang
,
E.
Bonaccurso
,
J.
Venzmer
, and
S.
Garoff
, “
Deposition of drops containing surfactants on liquid pools: Movement of the contact line, marangoni ridge, capillary waves and interfacial particles
,”
Colloids Surf. A
486
,
53
59
(
2015
).
22.
G.
Karapetsas
,
R. V.
Craster
, and
O. K.
Matar
, “
Surfactant-driven dynamics of liquid lenses
,”
Phys. Fluids
23
,
122106
(
2011
).
23.
Y.
Liu
,
C.
Peco
, and
J.
Dolbow
, “
A fully coupled mixed finite element method for surfactants spreading on thin liquid films
,”
Comput. Methods Appl. Mech. Eng.
345
,
429
453
(
2019
).
24.
Z.
Hanene
,
H.
Alla
,
M.
Abdelouahab
, and
T.
Roques-Carmes
, “
A numerical model of an immiscible surfactant drop spreading over thin liquid layers using CFD/VOF approach
,”
Colloids Surf. A
600
,
124953
(
2020
).
25.
J. B.
Grotberg
, “
Respiratory fluid mechanics
,”
Phys. Fluids
23
,
021301
(
2011
).
26.
A.
Khanal
,
R.
Sharma
,
T. E.
Corcoran
,
S.
Garoff
,
T. M.
Przybycien
, and
R. D.
Tilton
, “
Surfactant driven post-deposition spreading of aerosols on complex aqueous subphases. 1: High deposition flux representative of aerosol delivery to large airways
,”
J. Aerosol Med. Pulm. Drug Delivery
28
,
382
393
(
2015
).
27.
R.
Sharma
,
A.
Khanal
,
T. E.
Corcoran
,
S.
Garoff
,
T. M.
Przybycien
, and
R. D.
Tilton
, “
Surfactant driven post-deposition spreading of aerosols on complex aqueous subphases. 2: Low deposition flux representative of aerosol delivery to small airways
,”
J. Aerosol Med. Pulm. Drug Delivery
28
,
394
405
(
2015
).
28.
E. A.
van Nierop
,
A.
Ajdari
, and
H. A.
Stone
, “
Reactive spreading and recoil of oil on water
,”
Phys. Fluids
18
,
038105
(
2006
).
29.
R.
Hamed
and
J.
Fiegel
, “
Synthetic tracheal mucus with native rheological and surface tension properties: Synthetic Tracheal Mucus with native properties
,”
J. Biomed. Mater. Res.
102
,
1788
1798
(
2014
).
30.
D.
Kaneko
,
J.
Gong
,
M.
Zríimyi
, and
Y.
Osada
, “
Kinetics of fluid spreading on viscoelastic substrates
,”
J. Polym. Sci. B
43
,
562
572
(
2005
).
31.
R.
Sharma
,
T. E.
Corcoran
,
S.
Garoff
,
T. M.
Przybycien
,
E. R.
Swanson
, and
R. D.
Tilton
, “
Quasi-immiscible spreading of aqueous surfactant solutions on entangled aqueous polymer solution subphases
,”
ACS Appl. Mater. Interfaces
5
,
5542
5549
(
2013
).
32.
K.
Koch
,
B.
Dew
,
T. E.
Corcoran
,
T. M.
Przybycien
,
R. D.
Tilton
, and
S.
Garoff
, “
Surface tension gradient driven spreading on aqueous Mucin solutions: A possible route to enhanced pulmonary drug delivery
,”
Mol. Pharm.
8
,
387
394
(
2011
).
33.
K. E.
Daniels
,
S.
Mukhopadhyay
, and
R. P.
Behringer
, “
Starbursts and wispy drops: Surfactants spreading on gels
,”
Chaos
15
,
041107
(
2005
).
34.
K. E.
Daniels
,
S.
Mukhopadhyay
,
P. J.
Houseworth
, and
R. P.
Behringer
, “
Instabilities in droplets spreading on gels
,”
Phys. Rev. Lett.
99
,
124501
(
2007
).
35.
C.
Spandagos
,
T. B.
Goudoulas
,
P. F.
Luckham
, and
O. K.
Matar
, “
Surface tension-induced gel fracture. Part 1. Fracture of agar gels
,”
Langmuir
28
,
7197
7211
(
2012
).
36.
C.
Spandagos
,
T. B.
Goudoulas
,
P. F.
Luckham
, and
O. K.
Matar
, “
Surface tension-induced gel fracture. Part 2. Fracture of gelatin gels
,”
Langmuir
28
,
8017
8025
(
2012
).
37.
D.
Schenck
,
S.
Goettler
, and
J.
Fiegel
, “
Surfactant-induced spreading of nanoparticles is inhibited on mucus mimetic surfaces that model native lung conditions
,”
Phys. Biol.
16
,
065001
(
2019
).
38.
C.
Dritselis
and
G.
Karapetsas
, “
Open-source finite volume solvers for multiphase (n-phase) flows involving either Newtonian or non-Newtonian complex fluids
,”
Comput. Fluids
245
,
105590
(
2022
).
39.
G.
Karapetsas
and
C.
Dritselis
, see https://github.com/gkarapetsas/rheoMultiFluidInterFoam for “The open-source control volume solver rheoMultiFluidInterFoam, based on OpenFOAM®, that can be used for the simulation of non-Newtonian n-phase flows” (
2022
).
40.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume-of-fluid method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
41.
K.
Smith
,
F.
Solis
, and
D.
Chopp
, “
A projection method for motion of triple junctions by levels sets
,”
Interfaces Free Boundaries
4
,
263
276
(
2002
).
42.
Z.
Xie
,
D.
Pavlidis
,
P.
Salinas
,
C. C.
Pain
, and
O. K.
Matar
, “
A control volume finite element method for three-dimensional three-phase flows
,”
Int. J. Numer. Methods Fluids
92
,
765
784
(
2020
).
43.
N.
Tofighi
and
M.
Yildiz
, “
Numerical simulation of single droplet dynamics in three-phase flows using ISPH
,”
Comput. Math. Appl.
66
,
525
536
(
2013
).
44.
J.
Kim
, “
Phase field computations for ternary fluid flows
,”
Comput. Methods Appl. Mech. Eng.
196
,
4779
4788
(
2007
).
45.
B.
Lafaurie
,
C.
Nardone
,
R.
Scardovelli
,
S.
Zaleski
, and
G.
Zanetti
, “
Modelling merging and fragmentation in multiphase flows with SURFER
,”
J. Comput. Phys.
113
,
134
147
(
1994
).
46.
R.
Scardovelli
and
S.
Zaleski
, “
Direct numerical simulation of free-surface and interfacial flow
,”
Annu. Rev. Fluid Mech.
31
,
567
603
(
1999
).
47.
D.
Gerlach
,
G.
Tomar
,
G.
Biswas
, and
F.
Durst
, “
Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows
,”
Int. J. Heat Mass Transfer
49
,
740
754
(
2006
).
48.
A.
Önder
and
P. L.-F.
Liu
, “
Deep learning of interfacial curvature: A symmetry-preserving approach for the volume of fluid method
,”
J. Comput. Phys.
485
,
112110
(
2023
).
49.
C.
Ierardi
,
A. D.
Torre
,
G.
Montenegro
,
A.
Onorati
,
F.
Radaelli
,
L.
Visconti
, and
M.
Miarelli
, “
Modeling of two-phase flows at low capillary number with VOF method
,”
Comput. Fluids
252
,
105772
(
2023
).
50.
H.
Xia
and
W.
Ge
, “
Modelling and simulation of surface-tension-dominant two-phase flows with an improved geometric volume of fluid framework
,”
Colloids Surf. A
711
,
136277
(
2025
).
51.
N. J.
Balmforth
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to Stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
52.
E.
Mitsoulis
and
J.
Tsamopoulos
, “
Numerical simulations of complex yield-stress fluid flows
,”
Rheol. Acta
56
,
231
258
(
2017
).
53.
T. C.
Papanastasiou
, “
Flows of materials with yield
,”
J. Rheol.
31
,
385
404
(
1987
).
54.
J.
Tsamopoulos
,
Y.
Dimakopoulos
,
N.
Chatzidai
,
G.
Karapetsas
, and
M.
Pavlidis
, “
Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment
,”
J. Fluid Mech.
601
,
123
164
(
2008
).
55.
M. K.
Tripathi
,
K. C.
Sahu
,
G.
Karapetsas
, and
O. K.
Matar
, “
Bubble rise dynamics in a viscoplastic material
,”
J. Non-Newtonian Fluid Mech.
222
,
217
226
(
2015
).
56.
G.
Karapetsas
,
D.
Photeinos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Dynamics and motion of a gas bubble in a viscoplastic medium under acoustic excitation
,”
J. Fluid Mech.
865
,
381
413
(
2019
).
57.
F.
Pimenta
and
M. A.
Alves
, see https://github.com/fppimenta/rheoTool for “The open-source toolbox RheoTool, based on OpenFOAM®, that can be used to simulate Generalized Newtonian Fluids (GNF) and viscoelastic fluids” (
2016
).
58.
J. P.
van Doormaal
and
G. D.
Raithby
, “
Enhancements of the SIMPLE method for predicting incompressible fluid flows
,”
Numer. Heat Transfer
7
,
147
163
(
1984
).
59.
M.
Jalaal
,
B.
Stoeber
, and
N. J.
Balmforth
, “
Spreading of viscoplastic droplets
,”
J. Fluid Mech.
914
,
A21
(
2021
).
60.
H. L.
França
,
M.
Jalaal
, and
C. M.
Oishi
, “
Elasto-viscoplastic spreading: From plastocapillarity to elastocapillarity
,”
Phys. Rev. Res.
6
,
013226
(
2024
).
61.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Courier Corporation
,
2013
).
62.
F.
Sofos
,
C.
Dritselis
,
S.
Misdanitis
,
T.
Karakasidis
, and
C.
Valougeorgis
, “
Data driven closed form expressions for rarefied gas flow rates through circular tubes via machine learning techniques
,”
Microfluid. Nanofluid.
27
,
85
(
2023
).
63.
M.
Cranmer
,
A.
Sanchez Gonzalez
,
P.
Battaglia
,
R.
Xu
,
K.
Cranmer
,
D.
Spergel
, and
S.
Ho
, “
Discovering symbolic models from deep learning with inductive biases
,” in
Advances in Neural Information Processing Systems
, edited by
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M.
Balcan
, and
H.
Lin
(
Curran Associates, Inc
.,
2020
), Vol. 33, pp.
17429
17442
.
You do not currently have access to this content.