Butterflies achieve their flight through a coupling of wing motion and remarkable body pitching and they seldom hover in nature compared to other flying insects. This study elucidates the aerodynamic mechanisms of the hovering butterfly using numerical simulation and vortex dynamics analysis, utilizing the detailed wing and body kinematics measured by highspeed filming. The results reveal that during each stroke, the leading-edge vortex (LEV) on the forewings and the trailing-edge vortex (TEV) on the hindwings initially attach to the wing surfaces and grow rapidly. The TEV, then, sheds, while the LEV maintains its strength and attachment. Thus, the high lift is mainly generated through the rapid acceleration and delayed stall mechanisms. During hovering, the mean body pitch angle approaches 90°, balancing the forward forces generated in each stroke. The substantial amplitude of body pitching enables the butterfly to project sufficient vertical force to support its weight. Notably, butterflies generate approximately 50% of the total aerodynamic force vertically, indicating lower efficiency. The wing motions during the upstroke and downstroke are approximately symmetrical, resulting in almost equal contributions to vertical force. The vertical force on the hindwings contributes only about 10% of weight supporting, attributed to earlier TEV shedding and the absence of low-pressure regions. However, the aerodynamic centers of the hindwings are far from the center of mass, ensuring the balance of pitching moments. This work provides deeper insights into hovering butterfly aerodynamics and offers theoretical guidance for the development of bio-inspired flying robots.

1.
L.
Chen
,
C.
Cheng
,
C.
Zhou
,
Y.
Zhang
, and
J.
Wu
, “
Flapping rotary wing: A novel low-Reynolds number layout merging bionic features into micro rotors
,”
Prog. Aerosp. Sci.
146
,
100984
(
2024
).
2.
H.
Liu
,
S.
Wang
, and
T.
Liu
, “
Vortices and forces in biological flight: Insects, birds, and bats
,”
Annu. Rev. Fluid Mech.
56
(
1
),
147
(
2024
).
3.
Y.-H.
Fang
,
Y.-L.
Luu
, and
J.-T.
Yang
, “
Kinematics and aerodynamic analysis in the turning flights of butterflies
,”
Phys. Fluids
36
(
3
),
031905
(
2024
).
4.
S.-K.
Chang
,
Y.-J.
Lin
,
K.-L.
Hsu
, and
J.-T.
Yang
, “
Decoupling wing-shape effects of wing-swept angle and aspect ratio on a forward-flying butterfly
,”
Phys. Rev. E
107
(
6
),
065105
(
2023
).
5.
Y.
Zhang
,
X.
Wang
,
S.
Wang
,
W.
Huang
, and
Q.
Weng
, “
Kinematic and aerodynamic investigation of the butterfly in forward free flight for the butterfly-inspired flapping wing air vehicle
,”
Appl. Sci.
11
(
6
),
2620
(
2021
).
6.
C.
Kang
,
J.
Cranford
,
M. K.
Sridhar
,
D.
Kodali
,
D. B.
Landrum
, and
N.
Slegers
, “
Experimental characterization of a butterfly in climbing flight
,”
AIAA J.
56
(
1
),
15
24
(
2018
).
7.
T.
Weis-Fogh
, “
Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production
,”
J. Exp. Biol.
59
(
1
),
169
230
(
1973
).
8.
M. H.
Dickinson
,
F.-O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
(
5422
),
1954
1960
(
1999
).
9.
J. M.
Birch
and
M. H.
Dickinson
, “
The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight
,”
J. Exp. Biol.
206
(
13
),
2257
2272
(
2003
).
10.
L.
Chen
and
J.
Wu
, “
Coexistence of dual wing–wake interaction mechanisms during the rapid rotation of flapping wings
,”
J. Fluid Mech.
987
,
A16
(
2024
).
11.
H.
Huang
and
M.
Sun
, “
Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations
,”
Acta Mech. Sin.
28
(
6
),
1590
1601
(
2012
).
12.
N.
Yokoyama
,
K.
Senda
,
M.
Iima
, and
N.
Hirai
, “
Aerodynamic forces and vortical structures in flapping butterfly's forward flight
,”
Phys. Fluids
25
(
2
),
021902
(
2013
).
13.
Y.-H. J.
Fei
and
J.-T.
Yang
, “
Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation
,”
Phys. Rev. E
92
(
3
),
033004
(
2015
).
14.
Y.-H. J.
Fei
and
J. T.
Yang
, “
Importance of body rotation during the flight of a butterfly
,”
Phys. Rev. E
93
(
3
),
033124
(
2016
).
15.
A. T.
Bode-Oke
and
H.
Dong
, “
The reverse flight of a monarch butterfly (Danaus plexippus) is characterized by a weight-supporting upstroke and postural changes
,”
J. R Soc. Interface
17
(
167
),
20200268
(
2020
).
16.
M. K.
Sridhar
,
C.
Kang
, and
D. B.
Landrum
, “
Instantaneous lift and motion characteristics of butterflies in free flight
,” in
46th AIAA Fluid Dynamics Conference
(
American Institute of Aeronautics and Astronautics
,
Washington, DC
,
2016
).
17.
C.
Kang
,
M. K.
Sridhar
, and
D. B.
Landrum
, “
Dynamic relationship between flapping wing and body undulation of monarch butterflies in free flight
,” in
2018 AIAA Aerospace Sciences Meeting
(
Kissimmee, Florida
,
2018
).
18.
M. K.
Sridhar
,
C.
Kang
, and
D. B.
Landrum
, “
Beneficial effect of the coupled wing-body dynamics on power consumption in butterflies
,” AIAA Paper No. 2019-0566,
2019
.
19.
K. C.
Tejaswi
,
M. K.
Sridhar
,
C.
Kang
, and
T.
Lee
, “
Effects of abdomen undulation in energy consumption and stability for monarch butterfly
,”
Bioinspir. Biomim.
16
(
4
),
046003
(
2021
).
20.
M. K.
Sridhar
,
C.
Kang
, and
T.
Lee
, “
Geometric formulation for the dynamics of monarch butterfly with the effects of abdomen undulation
,” AIAA Paper No. 2020-1962,
2020
.
21.
J.
Jayakumar
,
K.
Senda
, and
N.
Yokoyama
, “
Control of pitch attitude by abdomen during forward flight of two-dimensional butterfly
,”
J. Aircraft
55
(
6
),
2327
2337
(
2018
).
22.
L.
Zheng
,
T. L.
Hedrick
, and
R.
Mittal
, “
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies
,”
PLoS One
8
(
1
),
e53060
(
2013
).
23.
L. C.
Johansson
and
P.
Henningsson
, “
Butterflies fly using efficient propulsive clap mechanism owing to flexible wings
,”
J. R Soc. Interface
18
(
174
),
20200854
(
2021
).
24.
M.
Sun
and
J.
Tang
, “
Lift and power requirements of hovering flight in Drosophila virilis
,”
J. Exp. Biol.
205
(
16
),
2413
2427
(
2002
).
25.
M.
Lei
and
C.
Li
, “
The aerodynamic performance of passive wing pitch in hovering flight
,”
Phys. Fluids
32
(
5
),
051902
(
2020
).
26.
M.
Sun
and
Y.
Xiong
, “
Dynamic flight stability of a hovering bumblebee
,”
J. Exp. Biol.
208
(
3
),
447
459
(
2005
).
27.
H.
Liu
,
C. P.
Ellington
,
K.
Kawachi
,
C.
van den Berg
, and
A. P.
Willmott
, “
A computational fluid dynamic study of hawkmoth hovering
,”
J. Exp. Biol.
201
(
4
),
461
477
(
1998
).
28.
J. K.
Kim
,
J. S.
Han
,
J. S.
Lee
, and
J. H.
Han
, “
Hovering and forward flight of the hawkmoth Manduca sexta: Trim search and 6-DOF dynamic stability characterization
,”
Bioinspir. Biomim.
10
(
5
),
056012
(
2015
).
29.
C. P.
Ellington
, “
The aerodynamics of hovering insect flight. III. Kinematics
,”
Philos. Trans. R. Soc. B: Biol. Sci.
305
(
1122
),
41
78
(
1984
).
30.
G. K.
Taylor
,
R. L.
Nudds
, and
A. L. R.
Thomas
, “
Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency
,”
Nature
425
(
6959
),
707
711
(
2003
).
31.
C. P.
Ellington
, “
Vortices and hovering flight
,” in
Instationäre Effekte an Schwingenden Tierflügeln
(
Franz Steiner Wiesbaden
,
1980
), pp.
64
101
.
32.
D. L.
Grodnitsky
,
R.
Dudley
, and
L.
Gilbert
, “
Wing decoupling in hovering flight of swallowtail butterflies (Lepidoptera: Papilionidae)
,”
Trop. Lepidoptera Res.
5
(
2
),
85
86
(
1994
).
33.
H.
Huang
, “
Aerodynamic forces and power requirements of butterfly flight
,” Ph.D. dissertation (
Beihang University
,
2007
).
34.
Y.-H.
Fang
,
C.-H.
Tang
,
Y.-J.
Lin
,
S.-I.
Yeh
, and
J.-T.
Yang
, “
The lift effects of chordwise wing deformation and body angle on low-speed flying butterflies
,”
Biomimetics
8
(
3
),
287
(
2023
).
35.
A.
Mathis
,
P.
Mamidanna
,
K. M.
Cury
,
T.
Abe
,
V. N.
Murthy
,
M. W.
Mathis
, and
M.
Bethge
, “
DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning
,”
Nat. Neurosci.
21
(
9
),
1281
1289
(
2018
).
36.
C. P.
Ellington
, “
The aerodynamics of hovering insect flight. II. Morphological parameters
,”
Philos. Trans. R. Soc. B: Biol. Sci.
305
(
1122
),
17
40
(
1984
).
37.
J.
Latt
,
O.
Malaspinas
,
D.
Kontaxakis
,
A.
Parmigiani
,
D.
Lagrava
,
F.
Brogi
,
M. B.
Belgacem
,
Y.
Thorimbert
,
S.
Leclaire
,
S.
Li
,
F.
Marson
,
J.
Lemus
,
C.
Kotsalos
,
R.
Conradin
,
C.
Coreixas
,
R.
Petkantchin
,
F.
Raynaud
,
J.
Beny
, and
B.
Chopard
, “
Palabos: Parallel lattice Boltzmann solver
,”
Comput. Math. Appl.
81
,
334
350
(
2021
).
38.
K.
Suzuki
and
T.
Inamuro
, “
Effect of internal mass in the simulation of a moving body by the immersed boundary method
,”
Comput. Fluids
49
(
1
),
173
187
(
2011
).
39.
K.
Suzuki
,
K.
Minami
, and
T.
Inamuro
, “
Lift and thrust generation by a butterfly-like flapping wing–body model: Immersed boundary–lattice Boltzmann simulations
,”
J. Fluid Mech.
767
,
659
695
(
2015
).
40.
K.
Suzuki
,
M.
Kouji
, and
M.
Yoshino
, “
Flight dynamics in forward flights of cabbage white butterfly
,”
J. Fluid Sci. Technol.
18
(
1
),
JFST0011
(
2023
).
41.
J. C.
Wu
, “
Theory for aerodynamic force and moment in viscous flows
,”
AIAA J.
19
(
4
),
432
441
(
1981
).
42.
M.
Sun
and
J. H.
Wu
, “
Large aerodynamic forces on a sweeping wing at low Reynolds number
,”
Acta Mech. Sin.
20
(
1
),
24
31
(
2004
).
43.
C. P.
Ellington
,
C.
van den Berg
,
A. P.
Willmott
, and
A. L. R.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
(
6610
),
626
630
(
1996
).
44.
L.
Chen
,
C.
Zhou
,
N. H.
Werner
,
B.
Cheng
, and
J.
Wu
, “
Dual-stage radial–tangential vortex tilting reverses radial vorticity and contributes to leading-edge vortex stability on revolving wings
,”
J. Fluid Mech.
963
,
A29
(
2023
).
45.
L.
Chen
,
L.
Wang
,
C.
Zhou
,
J.
Wu
, and
B.
Cheng
, “
Effects of Reynolds number on leading-edge vortex formation dynamics and stability in revolving wings
,”
J. Fluid Mech.
931
,
A13
(
2022
).
46.
J. H.
Brackenbury
, “
Kinematics of take-off and climbing flight in butterflies
,”
J. Zool.
224
(
2
),
251
270
(
1991
).
47.
M.
Okamoto
,
S.
Sunada
, and
H.
Tokutake
, “
Stability analysis of gliding flight of a swallowtail butterfly Papilio xuthus
,”
J. Theor. Biol.
257
(
2
),
191
202
(
2009
).
48.
M.
Stylman
,
C. M.
Penz
, and
P.
DeVries
, “
Large hind wings enhance gliding performance in ground effect in a neotropical butterfly (Lepidoptera: Nymphalidae)
,”
Ann. Entomol. Soc. Am.
113
(
1
),
15
22
(
2020
).
49.
B.
Jantzen
and
T.
Eisner
, “
Hindwings are unnecessary for flight but essential for execution of normal evasive flight in Lepidoptera
,”
Proc. Natl. Acad. Sci. U. S. A.
105
(
43
),
16636
16640
(
2008
).
50.
C.
Le Roy
,
R.
Cornette
,
V.
Llaurens
, and
V.
Debat
, “
Effects of natural wing damage on flight performance in Morpho butterflies: What can it tell us about wing shape evolution?
J. Exp. Biol.
222
(
16
),
jeb204057
(
2019
).
51.
H. L.
Owens
,
D. S.
Lewis
,
F. L.
Condamine
,
A. Y.
Kawahara
, and
R. P.
Guralnick
, “
Comparative phylogenetics of papilio butterfly wing shape and size demonstrates independent hindwing and forewing evolution
,”
Syst. Biol.
69
(
5
),
813
819
(
2020
).
You do not currently have access to this content.