The uncertainty of climate change effect on the tropical cyclone (TC) frequency and intensity has big impact on TC hazard assessment. In this study, a statistical dynamics synthetic TC model is used to generate TCs in the Western North Pacific (WNP) basin. Accordingly, three approaches are proposed to study the climate change impact on TC induced extreme wind speeds, using marine and atmospheric parameters from global circulation models (GCMs). The study covers three timespans, historical (1981–2010), mid-century (2041–2070), and late-century (2071–2100) and focuses on the Shared Socioeconomic Pathway 585 (SSP585) scenarios. For the genesis model: Approach #1 uses the TC detection method to extract the TC genesis properties from GCMs; Approach #2 uses the statistical TC genesis index to evaluate the TC genesis information; and Approach #3 calculates the relative genesis change between timespans under GCMs and then uses it to scale the observed datasets. For the intensity model, Approaches #1 and #2 use the marine and atmospheric parameters from GCMs directly, while Approach #3 replaces the GCM future datasets by adding the relative change to the reanalysis datasets. A 50-year wind speed ratio between current and future scenarios is used to assess the impact on TC hazard. All approaches indicate that the climate impact on TC risk varies over the WNP basin, with coastal cities in high latitude more likely to experience increased extreme TC wind speeds than those at low latitude. Approaches #1 and #2 give close relative extreme wind speed change, compared to further larger increase by Approach #3.

1.
E. N.
Rappaport
, “
Loss of life in the United States associated with recent Atlantic tropical cyclones
,”
Bull. Am. Meteorol. Soc.
81
(
9
),
2065
2073
(
2000
).
2.
Y. F.
Xiao
,
Z. D.
Duan
,
Y. Q.
Xiao
et al, “
TC wind hazard analysis for southeast China coastal regions
,”
Struct. Saf.
33
(
4
),
286
295
(
2011
).
3.
P. J.
Vickery
,
P. F.
Skerlj
, and
L. A.
Twisdale
, “
Simulation of hurricane risk in the U.S. using empirical track model
,”
J. Struct. Eng.
126
(
10
),
1222
1237
(
2000
).
4.
K. H.
Lee
and
D. V.
Rosowsky
, “
Synthetic hurricane wind speed records: Development of a database for hazard analyses and risk studies
,”
Nat. Hazards Rev.
8
(
8
),
23
34
(
2007
).
5.
M. F.
Huang
,
Q.
Wang
,
R. Z.
Jing
,
W. J.
Lou
,
Y.
Hong
, and
L. Z.
Wang
, “
Tropical cyclone full track simulation in the western North Pacific based on random forests
,”
J. Wind Eng. Ind. Aerodyn.
228
,
105119
(
2022
).
6.
T.
Knutson
,
S. J.
Camargo
,
J. C. L.
Chan
,
K.
Emanuel
,
C. H.
Ho
,
J.
Kossin
et al, “
Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming
,”
Bull. Am. Meteorol. Soc.
101
,
E303
(
2020
).
7.
K.
Emanuel
, “
Increasing destructiveness of tropical cyclones over the past 30 years
,”
Nature
436
,
686
688
(
2005
).
8.
L.
Mudd
,
Y.
Wang
,
D.
Rosowsky
, and
C.
Letchford
, “
Hurricane wind hazard assessment for a rapidly warming climate scenario
,”
J. Wind Eng. Ind. Aerodyn.
133
,
242
(
2014
).
9.
H.
Ku
,
J. H.
Maeng
, and
K.
Cho
, “
Climate change impact on TC-induced surges and wind field in the coastal region of South Korea
,”
J. Wind Eng. Ind. Aerodyn.
190
,
112
118
(
2019
).
10.
G. Y.
Kim
and
S.
Lee
, “
Prediction of extreme wind by stochastic TC model considering climate change
,”
J. Wind Eng. Ind. Aerodyn.
192
,
17
30
(
2019
).
11.
G.
Holland
and
C. L.
Bruyère
, “
Recent intense hurricane response to global climate change
,”
Clim. Dyn.
42
,
617
627
(
2014
).
12.
C. C. F.
Lok
and
J. C. L.
Chan
, “
Changes of tropical cyclone landfalls in South China throughout the twenty-first century
,”
Clim. Dyn.
51
(
7–8
),
2467
2483
(
2018
).
13.
D. S. R.
Park
,
C. H.
Ho
,
J. C. L.
Chan
,
K. J.
Ha
,
H. S.
Kim
,
J.
Kim
et al, “
Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections
,”
Sci. Rep.
7
,
41354
(
2017
).
14.
Y.
Chen
,
Z.
Duan
,
J.
Yang
,
Y.
Deng
, and
J.
Ou
, “
TCs of western North Pacific basin under warming climate and implications for future wind hazard of East Asia
,”
J. Wind Eng. Ind. Aerodyn.
208
(
4
),
104415
(
2021
).
15.
K. A.
Emanuel
, “
Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
30
),
12219
12224
(
2013
).
16.
K.
Bhatia
,
G.
Vecchi
,
H.
Murakami
,
S.
Underwood
, and
J.
Kossin
, “
Projected response of tropical cyclone intensity and intensification in a global climate model
,”
J. Clim.
31
(
20
),
8281
(
2018
).
17.
Intergovernmental Panel on Climate Change (IPCC)
,
Climate Change 2013: The Physical Science Basis
, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (
Cambridge University Press
,
2013
).
18.
T.
Knutson
,
J.
McBride
,
J.
Chan
et al, “
Tropical cyclones and climate change
,”
Nat. Geosci.
3
,
157
163
(
2010
).
19.
D. A.
Shaevitz
,
S. J.
Camargo
,
A. H.
Sobel
,
J. A.
Jonas
,
D.
Kim
,
A.
Kumar
, and
N.
Henderson
, “
Characteristics of tropical cyclones in high‐resolution models in the present climate
,”
J. Adv. Model. Earth Syst.
6
(
4
),
1154
1172
(
2014
).
20.
M.
Stowasser
,
Y.
Wang
, and
K.
Hamilton
, “
Tropical cyclone changes in the western North Pacific in a global warming scenario
,”
J. Clim.
20
(
11
),
2378
2396
(
2007
).
21.
T. R.
Knutson
,
J. J.
Sirutis
,
G. A.
Vecchi
,
S.
Garner
,
M.
Zhao
,
H. S.
Kim
et al, “
Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios
,”
J. Clim.
26
(
17
),
6591
6617
(
2013
).
22.
G.
Villarini
and
G. A.
Vecchi
, “
Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models
,”
Nat. Clim. Change
2
(
8
),
604
607
(
2012
).
23.
W. R.
Huang
and
J. C.
Chan
, “
Dynamical downscaling forecasts of Western North Pacific tropical cyclone genesis and landfall
,”
Clim. Dyn.
42
,
2227
2237
(
2014
).
24.
S. J.
Camargo
,
M. K.
Tippett
,
A. H.
Sobel
,
G. A.
Vecchi
, and
M.
Zhao
, “
Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model
,”
J. Clim.
27
(
24
),
9171
9196
(
2014
).
25.
J.
Wang
,
S.
Cao
,
R.
Zhang
,
S.
Li
, and
T. K.
Tse
, “
Uncertainty of TC extreme wind speeds in Hong Kong integrating the effects of climate change
,”
Phys. Fluids
36
(
8
),
087126
(
2024
).
26.
J.
Wang
,
T. K.
Tse
,
S.
Li
, and
J. C.
Fung
, “
Prediction of the TC wind field in Hong Kong: Integrating the effects of climate change using the Shared Socioeconomic Pathways
,”
Clim. Dyn.
59
(
7
),
2311
2329
(
2022
).
27.
R.
Snaiki
and
T.
Wu
, “
Revisiting hurricane track model for wind risk assessment
,”
Struct. Saf.
87
,
102003
(
2020
).
28.
R.
Snaiki
and
T.
Wu
, “
Hurricane hazard assessment along the United States northeastern coast: Surface wind and rain fields under changing climate
,”
Front. Built Environ.
6
,
573054
(
2020
).
29.
D. V.
Rosowsky
,
L.
Mudd
, and
C.
Letchford
,
Assessing Climate Change Impact on the Joint Wind-Rain Hurricane Hazard for the Northeastern U.S. Coastline
(
Springer International Publishing
,
2016
).
30.
Y.
Chen
and
Z.
Duan
, “
A statistical dynamics track model of tropical cyclones for assessing TC wind hazard in the coast of southeast China
,”
J. Wind Eng. Ind. Aerodyn.
172
,
325
340
(
2018
).
31.
M. K.
Tippett
,
S. J.
Camargo
, and
A. H.
Sobel
, “
A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis
,”
J. Clim.
24
(
9
),
2335
2357
(
2011
).
32.
K.
Emanuel
, “
A fast intensity simulator for tropical cyclone risk analysis
,”
Nat. Hazards
88
(
2
),
779
718
(
2017
).
33.
C. Y.
Lee
,
S. J.
Camargo
,
A. H.
Sobel
, and
M. K.
Tippett
, “
Statistical-dynamical downscaling projections of tropical cyclone activity in a warming climate: Two diverging genesis scenarios
,”
J. Clim.
33
(
11
),
4815
(
2020
).
34.
C. Y.
Lee
,
M. K.
Tippett
,
A. H.
Sobel
, and
S. J.
Camargo
, “
An environmentally forced tropical cyclone hazard model
,”
J. Adv. Model. Earth Syst.
10
,
223
(
2018
).
35.
N.
Bloemendaal
,
I. D.
Haigh
,
H. D.
Moel
,
S.
Muis
, and
J. C. J. H.
Aerts
, “
Generation of a global synthetic tropical cyclone hazard dataset using storm
,”
Sci. Data
7
(
1
),
40
(
2020
).
36.
N.
Bloemendaal
,
H.
de Moel
,
A. B.
Martinez
,
S.
Muis
,
I. D.
Haigh
,
K.
van der Wiel
, and
J. C.
Aerts
, “
A globally consistent local-scale assessment of future tropical cyclone risk
,”
Sci. Adv.
8
(
17
),
eabm8438
(
2022
).
37.
D. W.
Scott
,
Multivariate Density Estimation: Theory, Practice, and Visualization
(
John Wiley & Sons
,
2014
).
38.
S. R.
Sain
,
K. A.
Baggerly
, and
D. W.
Scott
, “
Cross-validation of multivariate densities
,”
J. Am. Stat. Assoc.
89
(
427
),
807
817
(
1994
).
39.
X.
Hong
,
A.
Kareem
, and
J.
Li
, “
Validation of the fast intensity model for TC and its application to the estimation of TC wind hazard for the southeast coast of China
,”
J. Wind Eng. Ind. Aerodyn.
206
,
104379
(
2020
).
40.
M.
Bister
and
K. A.
Emanuel
, “
Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability
,”
J. Geophys. Res. Atmos.
107
,
ACL-26
, https://doi.org/10.1029/2001JD000776 (
2002
).
41.
Y.
Meng
,
M.
Matsui
, and
K.
Hibi
, “
An analytical model for simulation of the wind field in a TC boundary layer
,”
J. Wind Eng. Ind. Aerodyn.
56
,
291
(
1995
).
42.
M.
Graf
,
K.
Nishijima
, and
M. H.
Faber
. “
A probabilistic TC model for the northwest Pacific region
,” in
Paper Presented at the Seventh Asia-Pacific Conference on Wind Engineering
,
Taipei, Taiwan
,
2009
.
43.
S. H.
Li
and
H. P.
Hong
, “
Use of historical best track data to estimate TC wind hazard at selected sites in China
,”
Nat. Hazards
76
(
2
),
1395
1414
(
2015
).
44.
P. J.
Vickery
and
L. A.
Mudd
, “
Typhoon study for a location off the coast of South Korea
,”
Technical Report No. 002021-183
(
Applied Research Associates
,
Albuquerque, NM
,
2022
).
45.
L. A.
Mudd
and
P. J.
Vickery
, “
Typhoon study for a location in Shenzhen, China
,”
Technical Report No. 005081-61
(
Applied Research Associates
,
Albuquerque, NM
,
2024
).
46.
H.
Murakami
and
M.
Sugi
, “
Effect of model resolution on tropical cyclone climate projections
,”
Sola
6
,
73
75
(
2010
).
47.
M. J.
Roberts
,
J.
Camp
,
J.
Seddon
,
P. L.
Vidale
,
K.
Hodges
,
B.
Vannière
, and
L.
Wu
, “
Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble
,”
Geophys. Res. Lett.
47
(
14
),
e2020GL088662
, https://doi.org/10.1029/2020GL088662 (
2020
).
48.
M.
Liang
,
J. C. L.
Chan
,
J.
Xu
, and
M.
Yamaguchi
, “
Numerical prediction of tropical cyclogenesis Part I: Evaluation of model performance
,”
Q. J. R. Meteorol. Soc.
147
,
1626
1641
(
2021
).
49.
A. J.
Colbert
,
B. J.
Soden
, and
B. P.
Kirtman
, “
The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks
,”
J. Clim.
28
(
5
),
1806
1823
(
2015
).
50.
H.
Xu
,
N.
Lin
,
M.
Huang
, and
W.
Lou
, “
Design tropical cyclone wind speed when considering climate change
,”
J. Struct. Eng.
146
(
5
),
04020063
(
2020
).
You do not currently have access to this content.