Cavitation results in increased losses, reduced performance, and blade damage, which seriously affects the safe and stable operation of centrifugal pumps. This study introduces a novel bionic blade design aimed at inhibiting cavitation based on the humpback whale's bumpy tubercles. The study investigates the impact of the geometric parameters of the bionic blade on cavitation, pressure, and vortex distribution. Furthermore, the losses inside the impeller are analyzed using entropy generation theory. The research findings indicate that compared to the original model, the bionic blade exhibits superior performance, with the highest efficiency and head achieved when the amplitude of the bionic blade is 0.08 times the blade outlet width. The head and efficiency of the bionic blade increased by 4.4% and by 2.7%, respectively. The bionic structure changes the flow state of the blade leading edge, leading to a reduction in the vortex near the shroud, a decrease in the low pressure region on the pressure surface of the blade, and a substantial increase in the impeller outlet pressure, reaching 13.6%. Moreover, the disappearance of the vortex on the suction surface of the blade inhibits cavitation and high entropy generation regions. As a result, the vapor volume and total entropy generation in the impeller significantly decrease by 38% and 37.4%, respectively, under severe cavitation conditions.

1.
J. M. F.
Oro
,
R. B.
Perotti
,
M. G.
Vega
et al, “
Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions
,”
Energy
278
,
127820
(
2023
).
2.
Z.
Hu
,
Y.
Cheng
,
D.
Liu
et al, “
Broadening the operating range of pump-turbine to deep-part load by runner optimization
,”
Renewable Energy
207
,
73
88
(
2023
).
3.
Y.
Lu
,
L.
Tan
,
X.
Zhao
et al, “
Experiment on cavitation-vibration correlation of a centrifugal pump under steady state and start-up conditions in energy storage station
,”
J. Energy Storage
83
,
110763
(
2024
).
4.
Y. L.
Zhang
,
K. Y.
Zhang
,
J. F.
Li
et al, “
Effect of rotational speed and flowrate on the startup characteristics of a pumps as turbine
,”
Meas. Control
55
(
9–10
),
1043
1056
(
2022
).
5.
Y. P.
Lu
,
L.
Tan
,
X. C.
Zhao
et al, “
Experiment on cavitation-vibration correlation of a centrifugal pump under steady state and start-up conditions in energy storage station
,”
J. Energy Storage
83
,
110763
(
2024
).
6.
H. L.
Liu
,
D. X.
Liu
,
Y.
Wang
et al, “
Experimental investigation and numerical analysis of unsteady attached sheet-cavitating flows in a centrifugal pump
,”
J. Hydrodyn.
25
(
3
),
370
378
(
2013
).
7.
L.
Tan
,
B. S.
Zhu
,
S. L.
Cao
et al, “
Cavitation flow simulation for a centrifugal pump at a low flow rate
,”
Chin. Sci. Bull.
58
(
8
),
949
952
(
2013
).
8.
X. B.
Su
,
Q.
Xu
,
C. Y.
Yang
et al, “
Numerical simulation and mechanistic model study of gas pocket distribution characteristics in a centrifugal impeller
,”
Phys. Fluids
36
(
11
),
113334
(
2024
).
9.
J. X.
Lu
,
F.
Wu
,
X. B.
Liu
et al, “
Investigation of the mechanism of unsteady flow induced by cavitation at the tongue of a centrifugal pump based on the proper orthogonal decomposition method
,”
Phys. Fluids
34
(
10
),
105113
(
2022
).
10.
B. C.
Khoo
,
A. J.
Giacomin
,
S. G.
Hatzikiriakos
et al, “
Special issue on flow cavitation
,”
Phys. Fluids
35
(
11
),
110401
(
2023
).
11.
D. Z.
Wu
,
L. Q.
Wan
,
Z. R.
Hao
et al, “
Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation
,”
J. Mech. Sci. Technol.
24
(
2
),
575
582
(
2010
).
12.
F. N.
Gonzalo
,
G.
Eric
,
P. R.
Fortes
et al, “
Head drop of spatial turbopump inducer
,”
J. Fluid Eng.
130
(
11
),
111301
(
2008
).
13.
H.
Sun
,
Y.
Luo
,
S.
Yuan
et al, “
Hilbert spectrum analysis of unsteady characteristics in centrifugal pump operation under cavitation status
,”
Ann. Nucl. Energy
114
,
607
615
(
2018
).
14.
X. J.
Li
,
S. Q.
Yuan
,
Z. Y.
Pan
et al, “
Numerical simulation of leading edge cavitation within the whole flow passage of a centrifugal pump
,”
Sci. China Technol. Sci.
56
(
9
),
2156
2162
(
2013
).
15.
X. Q.
Jia
,
Y.
Zhang
,
H.
Lv
et al, “
Study on external performance and internal flow characteristics in a centrifugal pump under different degrees of cavitation
,”
Phys. Fluids
35
(
1
),
014104
(
2023
).
16.
X.
Jia
,
H.
Chen
,
H.
Wang
et al, “
Correlation study between internal flow and vibration characteristics in centrifugal pumps at different cavitation levels
,”
Phys. Fluids
35
(
12
),
125118
(
2023
).
17.
J.
Lu
,
Y.
Gong
,
L.
Li
et al, “
Research of the vibration induced by cavitation in a centrifugal pump under part load condition
,”
Phys. Fluids
35
(
4
),
045144
(
2023
).
18.
J.
Lu
,
J.
Liu
,
L.
Qian
et al, “
Investigation of pressure pulsation induced by quasi-steady cavitation in a centrifugal pump
,”
Phys. Fluids
35
(
2
),
025119
(
2023
).
19.
H.
Xie
,
J. J.
Feng
,
X. Q.
Luo
et al, “
Effect of cavitation on radial force and pressure pulsation in centrifugal pump impeller
,”
J. Agric. Eng.
41
(
4
),
32
39
(
2025
).
20.
Y.
Wang
,
J.
Shao
, and
H.
Zhang
, “
Analysis of the effect of cavitation on internal fluid excitation characteristics of centrifugal pumps
,”
Phys. Fluids
36
(
8
),
082104
(
2024
).
21.
X.
Li
,
B.
Chen
,
X.
Luo
et al, “
Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump
,”
Renewable Energy
151
,
475
487
(
2020
).
22.
G. S.
Zhao
and
W. G.
Zhao
, “
Investigation of cavitation instabilities in a centrifugal pump based on one-element theory
,”
IOP Conf. Ser: Earth Environ. Sci.
163
(
1
),
012042
(
2018
).
23.
G.
Meng
,
F. X.
Yan
, and
X.
Wang
, “
Numerical simulation on cavitation pressure fluctuation in centrifugal pump at low flow rate
,”
IOP Conf. Ser: Earth Environ. Sci.
163
(
1
),
012024
(
2018
).
24.
R.
Bachert
,
B.
Stoffel
, and
M.
Dular
, “
Unsteady cavitation at the tongue of the volute of a centrifugal pump
,”
J. Fluids Eng.
132
(
6
),
061301
061306
(
2010
).
25.
X. R.
Cheng
,
J. H.
Luo
,
B.
Xiong
et al, “
Influence of the balance hole circumferential position on the cavitation performance of the semiopen impeller centrifugal pump
,”
Math. Probl. Eng.
2021
,
4472433
.
26.
P.
Song
,
Z.
Wei
,
H.
Zhen
et al, “
Effects of pre-whirl and blade profile on the hydraulic and cavitation performance of a centrifugal pump
,”
Int. J. Multiphase Flow
157
,
104261
(
2022
).
27.
E.
Dehnavi
,
A.
Danlos
,
M.
Solis
et al, “
Study on the pump cavitation characteristic through novel independent rotation of inducer and centrifugal impeller in co-rotation and counter-rotation modes
,”
Phys. Fluids
36
(
1
),
015120
(
2024
).
28.
W.
Yang
,
R.
Xiao
,
F.
Wang
et al, “
Influence of Splitter Blades on the Cavitation Performance of a Double Suction Centrifugal Pump
,”
Adv. Mech. Eng.
6
,
963197
(
2014
).
29.
Y.
Zheng
,
Y.
Li
,
F.
Zhang
et al, “
Energy performance improvement for a mixed flow pump based on advanced inlet guide vanes
,”
Phys. Fluids
36
(
9
),
095143
(
2024
).
30.
Wang
J
,
Wang
L K
,
Lu
J L
et al “
Numerical study of the effect of impeller timing position on the performance of multistage centrifugal pumps
,”
Hydropower Pumped Storage
9
(
5
),
74
81
(
2023
).
31.
S.
Zhang
,
R.
Zhang
,
S.
Zhang
et al, “
Effect of Impeller Inlet Geometry on Cavitation Performance of Centrifugal Pumps Based on Radial Basis Function
,”
Int. J. Rotating Mach.
2016
,
1
.
32.
F. S.
Xie
,
Y.
Wang
,
C. Z.
Liu
et al, “
Optimization of centrifugal pump cavitation performance based on CFD
,”
IOP Conf. Ser: Mater. Sci. Eng.
72
(
3
),
032023
(
2015
).
33.
H. Y.
Chen
,
W. W.
Song
,
B.
Wang
et al, “
Study on the effect of leading edge shape of high specific speed centrifugal pump blades on internal flow
,”
Water Resources Hydropower Technol.
52
(
10
),
80
88
(
2021
).
34.
X.
Jia
,
J.
Zhang
,
D.
Chen
et al, “
Impact of key airfoil blade parameters on the internal flow and vibration characteristics of centrifugal pumps
,”
Phys. Fluids
37
(
1
),
015134
(
2025
).
35.
C.
Wu
,
K.
Pu
,
C.
Li
et al, “
Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump
,”
Energy
246
,
123394
(
2022
).
36.
W.
Ye
,
H.
Liu
,
H.
Wang
et al, “
Towards the pumped-hydro energy storage: Improvement on the flow instability and cavitation performance with application-oriented forward skew angle of impeller blades
,”
Energy
316
,
134565
(
2025
).
37.
Y. Y.
Wang
,
W. G.
Zhao
,
H. D.
Han
et al, “
Effects of the centrifugal pump outlet blade angle on its internal flow field characteristics under cavitation condition
,”
J.
Appl. Fluid Mech.
16
(
2
),
389
399
(
2023
).
38.
H. M.
Campos
,
L. O.
Salviano
, and
A. V.
Pantaleão
, “
Leading-edge tubercles as an alternative to increasing a Francis turbine torque generation
,”
Energy
298
,
131340
(
2024
).
39.
C.
Dai
,
C.
Guo
,
Z.
Ge
et al, “
Study on drag and noise reduction of bionic blade of centrifugal pump and mechanism
,”
J. Bionic Eng.
18
,
428
440
(
2021
).
40.
H.
Li
,
G.
Gan
,
Y.
Duan
et al, “
Effect of leading edge tubercles bionic blade of high speed pump jet propulsor on cavitation suppression
,”
Phys. Fluids
36
(
12
),
125120
(
2024
).
41.
T.
Lin
,
J.
Zhang
,
B.
Wei
et al, “
The role of bionic tubercle leading-edge in a centrifugal pump as turbines (PATs)
,”
Renewable Energy
222
,
119869
(
2024
).
42.
Q.
Ke
,
Y.
Liu
,
L.
Tang
et al, “
The wake enhancement effect of bionic grooved blade on low-specific-speed centrifugal pump
,”
Phys. Fluids
37
(
1
),
015132
(
2025
).
43.
Y.
Lin
,
X.
Li
,
Z.
Zhu
et al, “
An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge
,”
Energy
246
,
123323
(
2022
).
44.
P.
Suryawijaya
and
G.
Kosyna
, “
Schaufeldruckmessungen im rotierenden System an einer Radial pumpe bei Gas/Flüssigkeitsgemischförderung
,”
Chem. Ing. Tech.
72
(
11
),
1366
1371
(
2000
).
You do not currently have access to this content.