This paper presents an improved actuator line model (ALM) for wind turbine modeling. A multi-rigid body system and multiple control systems are incorporated to overcome limitations observed in conventional ALM, which are one-way coupling and the need for artificial parameters such as rotational speed, blade pitch angle, and yaw direction, which could introduce inaccuracies when applied to large-scale simulations. Furthermore, an entropic lattice Boltzmann method (ELBM) solver is used for flow field simulation. This model's efficacy is verified with conditions that match those of another study, using the widely studied NREL (National Renewable Energy Laboratory) 5 MW wind turbine. Additional comparison is also made with particle imaging velocimetry (PIV) measurements using a scaled NREL UAE Phase IV turbine. The utility of this model is demonstrated in the context of a single turbine under various wind speeds and two turbines in tandem with different spacings and wind speeds, showcasing its efficiency and accuracy.

1.
J.
Jonkman
, “
The new modularization framework for the fast wind turbine CAE tool
,” in
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper No. 2013-0202
,
2013
, p.
202
.
2.
T. J.
Larsen
and
A. M.
Hansen
,
How 2 HAWC2, the User's Manual
(
Risø National Laboratory
,
2007
).
3.
W.
Froude
, “
On the elementary relation between pitch, slip, and propulsive efficiency
,” Technical Report No. NACA-TM-1 (
The National Aeronautics and Space Administration
,
1920
).
4.
W. J. M.
Rankine
, “On the mechanical principles of the action of propellers,” in
Transaction of the Institute of Naval Architects
(
1865
), Vol.
6
.
5.
J. N.
Sørensen
and
W. Z.
Shen
, “
Numerical modeling of wind turbine wakes
,”
J. Fluids Eng.
124
,
393
399
(
2002
).
6.
D.
Hartwanger
and
A.
Horvat
, “
3D modelling of a wind turbine using CFD
,” in
NAFEMS Conference, United Kingdom
,
2008
.
7.
R.
Lanzafame
,
S.
Mauro
, and
M.
Messina
, “
Wind turbine CFD modeling using a correlation-based transitional model
,”
Renewable Energy
52
,
31
39
(
2013
).
8.
Y.
Li
,
K.-J.
Paik
,
T.
Xing
, and
P. M.
Carrica
, “
Dynamic overset cfd simulations of wind turbine aerodynamics
,”
Renewable Energy
37
,
285
298
(
2012
).
9.
M.
Make
and
G.
Vaz
, “
Analyzing scaling effects on offshore wind turbines using CFD
,”
Renewable Energy
83
,
1326
1340
(
2015
).
10.
N.
Troldborg
, “
Actuator line modeling of wind turbine wakes
,” Ph.D. thesis (
DTU
,
2009
).
11.
P.
Jha
,
M.
Churchfield
,
P.
Moriarty
, and
S.
Schmitz
, “
Accuracy of state-of-the-art actuator-line modeling for wind turbine wakes
,” in
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper No. 2013-0608
,
2013
.
12.
P. K.
Jha
and
S.
Schmitz
, “
Actuator curve embedding – An advanced actuator line model
,”
J. Fluid Mech.
834
,
R2
(
2018
).
13.
J.
Leng
,
Z.
Gao
,
M. C.
Wu
,
T.
Guo
, and
Y.
Li
, “
A fluid–structure interaction model for large wind turbines based on flexible multibody dynamics and actuator line method
,”
J. Fluids Struct.
118
,
103857
(
2023
).
14.
M. J.
Churchfield
,
S. J.
Schreck
,
L. A.
Martinez
,
C.
Meneveau
, and
P. R.
Spalart
, “
An advanced actuator line method for wind energy applications and beyond
,” in
35th Wind Energy Symposium
, AIAA Paper No. 2017-1998,
2017
.
15.
H.
Asmuth
,
H.
Olivares-Espinosa
, and
S.
Ivanell
, “
Actuator line simulations of wind turbine wakes using the lattice Boltzmann method
,”
Wind Energy Sci.
5
,
623
645
(
2020
).
16.
H.
Asmuth
,
H.
Olivares-Espinosa
,
K.
Nilsson
, and
S.
Ivanell
, “
The actuator line model in lattice Boltzmann frameworks: Numerical sensitivity and computational performance
,”
J. Phys. Conf. Ser.
1256
,
012022
(
2019
).
17.
A. F.
Ribeiro
and
C.
Muscari
, “
Sliding mesh simulations of a wind turbine rotor with actuator line lattice-Boltzmann method
,”
Wind Energy
27
,
1115
(
2024
).
18.
S.
Rullaud
,
F.
Blondel
, and
M.
Cathelain
, “
Actuator-line model in a lattice Boltzmann framework for wind turbine simulations
,”
J. Phys. Conf. Ser.
1037
,
022023
(
2018
).
19.
H.
Schottenhamml
,
A.
Anciaux-Sedrakian
,
F.
Blondel
,
A.
Borras-Nadal
,
P.-A.
Joulin
, and
U.
Rüde
, “
Evaluation of a lattice Boltzmann-based wind-turbine\against a navier-stokes approach
,”
J. Phys. Conf. Ser.
2265
,
022027
(
2022
).
20.
E. H.
Malekshah
,
H.
Aybar
,
M. B. B.
Hamida
, and
R. Z.
Homod
, “
Parametric study on a convective flow in a thermal storage using IBM/thermal lattice Boltzmann flux solver
,”
Eng. Anal. Boundary Elem.
148
,
62
72
(
2023
).
21.
F.
Alshammari
,
M.
Elashmawy
, and
M. B. B.
Hamida
, “
Effects of working fluid type on powertrain performance and turbine design using experimental data of a 7.25 ℓ heavy-duty diesel engine
,”
Energy Convers. Manage.
231
,
113828
(
2021
).
22.
E. M.
Salomons
,
W. J.
Lohman
, and
H.
Zhou
, “
Simulation of sound waves using the lattice Boltzmann method for fluid flow: Benchmark cases for outdoor sound propagation
,”
PLoS One
11
,
e0147206
(
2016
).
23.
S.
Galindo-Torres
,
S.
Palma
,
S.
Quintero
,
A.
Scheuermann
,
X.
Zhang
,
K.
Krabbenhoft
,
M.
Ruest
, and
D.
Finn
, “
An airblast hazard simulation engine for block caving sites
,”
Int. J. Rock Mech. Min. Sci.
107
,
31
38
(
2018
).
24.
J.-p.
Xiao
,
J.
Wu
,
L.
Chen
, and
Z.-y.
Shi
, “
Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine
,”
Appl. Math. Mech.
32
,
729
738
(
2011
).
25.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
525
(
1954
).
26.
S.
Galindo-Torres
, “
A coupled discrete element lattice Boltzmann method for the simulation of fluid–solid interaction with particles of general shapes
,”
Comput. Methods Appl. Mech. Eng.
265
,
107
119
(
2013
).
27.
D.
d'Humières
, “
Multiple–relaxation–time lattice Boltzmann models in three dimensions
,”
Philos. Trans. R. Soc. London, Ser. A
360
,
437
451
(
2002
).
28.
L.
Fei
,
J.
Du
,
K. H.
Luo
,
S.
Succi
,
M.
Lauricella
,
A.
Montessori
, and
Q.
Wang
, “
Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice Boltzmann method
,”
Phys. Fluids
31
,
042105
(
2019
).
29.
X.
Shan
and
H.
Chen
, “
A general multiple-relaxation-time boltzmann collision model
,”
Int. J. Mod. Phys. C
18
,
635
643
(
2007
).
30.
K.
Suga
,
Y.
Kuwata
,
K.
Takashima
, and
R.
Chikasue
, “
A d3q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows
,”
Comput. Math. Appl.
69
,
518
529
(
2015
).
31.
M.
Geier
,
M.
Schönherr
,
A.
Pasquali
, and
M.
Krafczyk
, “
The cumulant lattice Boltzmann equation in three dimensions: Theory and validation
,”
Comput. Math. Appl.
70
,
507
547
(
2015
).
32.
S.
Ansumali
and
I. V.
Karlin
, “
Entropy function approach to the lattice Boltzmann method
,”
J. Stat. Phys.
107
,
291
308
(
2002
).
33.
A.
Jonnalagadda
,
A.
Sharma
, and
A.
Agrawal
, “
Single relaxation time entropic lattice Boltzmann methods: A developer's perspective for stable and accurate simulations
,”
Comput. Fluids
215
,
104792
(
2021
).
34.
S.
Hosseini
,
M.
Atif
,
S.
Ansumali
, and
I.
Karlin
, “
Entropic lattice Boltzmann methods: A review
,”
Comput. Fluids
259
,
105884
(
2023
).
35.
Z.
Ge
,
T.
Man
, and
S. A.
Galindo-Torres
, “
Mean stress tensor of discrete particle systems in submerged conditions
,”
Int. J. Solids Struct.
271-272
,
112239
(
2023
).
36.
J.
Jonkman
,
S.
Butterfield
,
W.
Musial
, and
G.
Scott
, “
Definition of a 5-MW reference wind turbine for offshore system development
,” Technical Report No. NREL/TP-500-38060 (
National Renewable Energy Laboratory
,
Golden, Colorado, USA
,
2009
).
37.
W. Z.
Shen
,
J. N.
Sørensen
, and
R.
Mikkelsen
, “
Tip loss correction for actuator/Navier–Stokes computations
,”
J. Sol. Energy Eng.
127
,
209
213
(
2005
).
38.
D.
Chappuis
, see https://danielchappuis.ch/download/ConstraintsDerivationRigidBody3D.pdf for “Constraints derivation for rigid body simulation in 3D” (2013).
39.
M. M.
Hand
,
D.
Simms
,
L.
Fingersh
,
D.
Jager
,
J.
Cotrell
,
S.
Schreck
, and
S.
Larwood
, “
Unsteady aerodynamics experiment phase VI: Wind tunnel test configurations and available data campaigns
,” Technical Report No. NREL/TP-500-29955 (
National Renewable Energy Laboratory
,
Golden, Colorado, USA
,
2001
).
40.
A.
Arabgolarcheh
,
S.
Jannesarahmadi
, and
E.
Benini
, “
Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method
,”
Renewable Energy
185
,
871
887
(
2022
).
41.
M.
Hansen
,
Aerodynamics of Wind Turbines
, 2nd ed. (
Earthscan
,
2008
).
42.
M.
Gholami Korzani
,
S. A.
Galindo-Torres
,
A.
Scheuermann
, and
D. J.
Williams
, “
Parametric study on smoothed particle hydrodynamics for accurate determination of drag coefficient for a circular cylinder
,”
Water Sci. Eng.
10
,
143
153
(
2017
).
43.
P. F.
Melani
,
O. S.
Mohamed
,
S.
Cioni
,
F.
Balduzzi
, and
A.
Bianchini
, “
An insight into the capability of the actuator line method to resolve tip vortices
,”
Wind Energy Sci.
9
,
601
622
(
2024
).
You do not currently have access to this content.