Motivated by the ubiquitous flows of viscoelastic fluids possessing yield stress in industrial applications and natural settings, the linear stability of sliding and plane Couette flows of White and Metzner (WM) fluid, which exhibits elasticity and yield stress, is analyzed. After yielding, the WM fluid behaves as an Upper Convected Maxwell fluid. In the creeping-flow limit, in the absence of yield stress, two linearly stable discrete Gorodtsov and Leonov (GL) modes exist for an arbitrary high value of the Weissenberg number. As the yield stress effect (i.e., Bingham number) increases, the GL modes become unstable, leading to an unstable flow. Analysis reveals that these modes originate near the walls due to the ‘extra normal stress’ arising from the synergistic effects of fluid yield stress and elasticity. The extra normal stress is an inherent feature of a WM fluid. Thus, the predicted instability is expected to be present in wall-bounded flows of WM fluid in the creeping-flow limit. The dispersion curves exhibit weak Hadamard instability, which is removed by incorporating a stress diffusivity term into the constitutive equation. The outcomes of the present study are potentially relevant to the WM fluid flows in geophysical and biological settings and industrial processes.

1.
Abdelgawad
M. S.
,
Cannon
I.
, and
Rosti
M. E.
, “
Scaling and intermittency in turbulent flows of elastoviscoplastic fluids
,”
Nat. Phys.
19
,
1059
(
2023
).
2.
Apostolidis
A. J.
and
Beris
A. N.
, “
Modeling of the blood rheology in steady-state shear flows
,”
J. Rheol.
58
(
3
),
607
633
(
2014
).
3.
Balmforth
N. J.
,
Frigaard
I. A.
, and
Ovarlez
G.
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
4.
Barry
B. W.
and
Meyer
M. C.
, “
Rheological properties of carbopol gels. i: Continuous shear and creep properties of carbopol gels
,”
Int. J. Pharm.
2
,
1
25
(
1979
).
5.
Beneitez
M.
,
Page
J.
, and
Kerswell
R. R.
, “
Polymer diffusive instability leading to elastic turbulence in plane couette flow
,”
Phys. Rev. Fluids
8
(
10
),
L101901
(
2023
).
6.
Bingham
E. C.
,
Fluidity and Plasticity
(
McGraw-Hill
,
1922
), pp.
215
218
, Chap. VIII.
7.
Bird
R. B.
,
Armstrong
R. C.
, and
Hassager
O.
,
Dynamics of Polymeric Liquids, Vol 1 Fluid Mechanics
(
John Wiley
,
New York
,
1977
).
8.
Bodiguel
H.
,
Beaumont
H.
,
Machado
A.
,
Martinie
L.
,
Kellay
H.
, and
Colin
A.
, “
Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids
,”
Phys. Rev. Lett.
114
(
5
),
028302
(
2015
).
9.
Buza
G.
,
Beneitez
M.
,
Page
J.
, and
Kerswell
R. R.
, “
Finite-amplitude elastic waves in viscoelastic channel flow from large to zero reynolds number
,”
J. Fluid Mech.
951
,
A3
(
2022
).
10.
Castillo
H.
and
Wilson
H.
, “
Towards a mechanism for instability in channel flow of highly shear-thinning viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
247
,
15
21
(
2017
).
11.
Chandra
B.
,
Mangal
R.
,
Shankar
V.
, and
Das
D.
, “
An instability driven by the shear-thinning and elasticity in the fluid flow of polymer solutions through microtubes
,”
Phys. Rev. Fluids
4
,
083301
(
2019
).
12.
Couchman
M. M. P.
,
Buza
G.
,
Beneitez
M.
,
Page
J.
, and
Kerswell
R. R.
, “
Inertial enhancement of the polymer diffusive instability
,”
J. Fluid Mech.
981
,
A2
(
2024
).
13.
Datta
S. S.
et al, “
Perspectives on viscoelastic flow instabilities and elastic turbulence
,”
Phys. Rev. Fluids
7
(
8
),
080701
(
2022
).
14.
Deguchi
K.
and
Nagata
M.
, “
Bifurcations and instabilities in sliding Couette flow
,”
J. Fluid Mech.
678
,
156
178
(
2011
).
15.
Dong
M.
and
Zhang
M.
, “
Asymptotic study of linear instability in a viscoelastic pipe flow
,”
J. Fluid Mech.
935
,
A28
(
2022
).
16.
Erken
O.
,
Fazla
B.
,
Muradoglu
M.
,
Izbassarov
D.
,
Romanò
F.
, and
Grotberg
J. B.
, “
Effects of elastoviscoplastic properties of mucus on airway closure in healthy and pathological conditions
,”
Phys. Rev. Fluids
8
,
053102
(
2023
).
17.
Fielding
S. M.
, “
Linear instability of planar shear banded flow
,”
Phys. Rev. Lett.
95
,
134501
(
2005
).
18.
Frigaard
I. A.
, “
Super-stable parallel flows of multiple visco-plastic fluids
,”
J. Non-Newt. Fluid Mech.
100
,
49
76
(
2001
).
19.
Frigaard
I. A.
,
Howison
S. D.
, and
Sobey
I. J.
, “
On the stability of poiseuille flow of a Bingham fluid
,”
J. Fluid Mech.
263
,
133
150
(
1994
).
20.
Gittler
P.
, “
Stability of axial Poiseuille-Couette flow between concentric cylinders
,”
Acta Mech.
101
,
1
13
(
1993
).
21.
Gorodtsov
V. A.
and
Leonov
A. I.
, “
On a linear instability of plane parallel Couette flow of viscoelastic fluid
,”
J. Appl. Math. Mech.
31
,
310
319
(
1967
).
22.
Johnson
M.
and
Segalman
D.
, “
A model for viscoelastic fluid behavior which allows non-affine deformation
,”
J. Non-Newtonian Fluid Mech.
2
,
255
270
(
1977
).
23.
Joseph
D. D.
and
Saut
J. C.
, “
Change of type and loss of evolution in the flow of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
20
,
117
141
(
1986
).
24.
Landry
M. P.
,
Frigaard
I. A.
, and
Martinez
D. M.
, “
Stability and instability of taylor–couette flows of a bingham fluid
,”
J. Fluid Mech.
560
,
321
353
(
2006
).
25.
Larson
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworths
,
Boston, MA
,
1988
).
26.
Larson
R. G.
,
Shaqfeh
E. S. G.
, and
Muller
S. J.
, “
A purely elastic instability in taylor– couette flow
,”
J. Fluid Mech.
218
,
573
600
(
1990
).
27.
Liu
R.
and
Liu
Q. S.
, “
Non-modal stability in sliding Couette flow
,”
J. Fluid Mech.
710
,
505
544
(
2012
).
28.
Nouar
C.
,
Kabouya
N.
,
Dusek
J.
, and
Mamou
M.
, “
Modal and non-modal linear stability of the plane bingham-poiseuille flow
,”
J. Fluid Mech.
577
,
211
(
2007
).
29.
Park
Y.
and
Liu
P.
, “
Oscillatory pipe flows of a yield-stress fluid
,”
J. Fluid Mech.
658
,
211
228
(
2010
).
30.
Patne
R.
, “
Effect of inhaled air temperature on mucus layer in the proximal airways
,”
J. Fluid Mech.
978
,
A15
(
2024
).
31.
Patne
R.
,
Mandloi
S.
,
Shankar
V.
, and
Subramanian
G.
, “
Instabilities in strongly shear-thinning viscoelastic flows through channels and tubes
,” arXiv:2408.01004 (
2024
).
32.
Patne
R.
and
Shankar
V.
, “
Stability of flow through deformable channels and tubes: Implications of consistent formulation
,”
J. Fluid Mech.
860
,
837
885
(
2019
).
33.
Patne
R.
and
Shankar
V.
, “
Instability induced by wall deformability in sliding couette flow
,”
Phys. Fluids
32
,
114102
(
2020
).
34.
Peng
J.
and
Zhu
K.-Q.
, “
Linear stability of bingham fluids in spiral couette flow
,”
J. Fluid Mech.
512
,
21
45
(
2004
).
35.
Picaut
L.
,
Ronsin
O.
,
Caroli
C.
, and
Baumberger
T.
, “
Experimental evidence of a helical, supercritical instability in pipe flow of shear thinning fluids
,”
Phys. Rev. Fluids
2
,
083303
(
2017
).
36.
Poole
R. J.
, “
Elastic instabilities in parallel shear flows of a viscoelastic shear-thinning liquid
,”
Phys. Rev. Fluids
1
,
041301
(
2016
).
37.
Preziosi
L.
and
Rosso
F.
, “
Stability of a viscous liquid between sliding pipes
,”
Phys. Fluids A: Fluid Dyn.
2
,
1158
(
1990
).
38.
Sahu
K. C.
,
Valluri
P.
,
Spelt
P. D. M.
, and
Matar
O. K.
, “
Linear instability of pressure-driven channel flow of a newtonian and a herschel-bulkley fluid
,”
Phys. Fluids
19
,
122101
(
2007
).
39.
Schmid
P. J.
and
Henningson
D. S.
,
Stability and Transition in Shear Flows
(
Springer
,
New York
,
2001
).
40.
Shemilt
J. D.
,
Horsley
A.
,
Jensen
O. E.
,
Thompson
A. B.
, and
Whitfield
C. A.
, “
Surface-tension-driven evolution of a viscoplastic liquid coating the interior of a cylindrical tube
,”
J. Fluid Mech.
944
,
A22
(
2022
).
41.
Shemilt
J. D.
,
Horsley
A.
,
Jensen
O. E.
,
Thompson
A. B.
, and
Whitfield
C. A.
, “
Surfactant amplifies yield-stress effects in the capillary instability of a film coating a tube
,”
J. Fluid Mech.
971
,
A24
(
2023
).
42.
Trefethen
L. N.
,
Spectral Methods in MATLAB
(
SIAM
,
Philadelphia, PA
,
2000
).
43.
Wen
C.
,
Poole
R. J.
,
Willis
A. P.
, and
Dennis
D. J. C.
, “
Experimental evidence of symmetry-breaking supercritical transition in pipe flow of shear-thinning fluids
,”
Phys. Rev. Fluids
2
,
031901
(
2017
).
44.
White
J. L.
and
Metzner
A. B.
, “
Development of constitutive equations for polymeric melts and solutions
,”
J. Appl. Polym. Sci.
7
,
1867
1889
(
1963
).
45.
Wilson
H.
and
Loridan
V.
, “
Linear instability of a highly shear-thinning fluid in channel flow
,”
J. Non-Newtonian Fluid Mech.
223
,
200
208
(
2015
).
46.
Wilson
H.
and
Rallison
J.
, “
Instability of channel flow of a shear-thinning White-Metzner fluid
,”
J. Non-Newtonian Fluid Mech.
87
,
75
96
(
1999
).
You do not currently have access to this content.