The present study investigates the solute dispersion due to flow generated by an imposed spatially periodic forcing to enhance solute dispersion using external forcing. The imposed forcing leads to the well-known Kolmogorov flow with zero volumetric flow rate. We have adopted Gill's methodology and homogenization approach to determine the transport coefficients considering the absorption at the top wall. In the large time limit, both methodologies yield the same results in the absence of wall absorption. However, at a high rate of absorption, these results disagree and the limitation of the homogenization approach is addressed in this study. There is no solute convection in the absence of wall absorption, whereas a non-trivial downstream solute convection is predicted in the presence of wall absorption. As the forcing wavenumber q increases, the solute is convected with a lower velocity of the fluid, owing to a decrease in the amplitude of oscillation of the fluid. Consequently, solute dispersion decreases, and the dispersion becomes diffusion-dominated. At high Peclect number Pe, two highly concentrated solute clouds occur near the walls. However, these clouds do not form at low Pe owing to the uniform distribution of solute in both directions. For large β and Pe, the solute is distributed more in the downstream direction than spreading in the upstream direction. For Pe=10, the peak of mean solute concentration increases by ten times compared to Pe=1. The dispersion is maximum when q=1, i.e., if the wavenumber of the spatial forcing is unity. This study also investigates the dispersion of colloid particles in the Kolmogorov flow with the effect of shear-induced diffusivity, which is the concentration-dependent diffusivity related to both Brownian and shear motions of the particles. The Taylor dispersion theory is applied to describe the shear-induced dispersion arising from the hydrodynamics interactions and the concentration distribution of the particles. More axial spreading of the concentration distribution is predicted for shear-induced diffusion than for constant diffusion. Thus, this study demonstrates the effectiveness of external periodic forcing in enhancing shear dispersion in Kolmogorov flow.

1.
Acrivos
,
A.
,
Batchelor
,
G.
,
Hinch
,
E.
,
Koch
,
D.
, and
Mauri
,
R.
, “
Longitudinal shear-induced diffusion of spheres in a dilute suspension
,”
J. Fluid Mech.
240
,
651
657
(
1992
).
2.
Alexiou
,
C.
,
Tietze
,
R.
,
Schreiber
,
E.
,
Jurgons
,
R.
,
Richter
,
H.
,
Trahms
,
L.
,
Rahn
,
H.
,
Odenbach
,
S.
, and
Lyer
,
S.
, “
Cancer therapy with drug loaded magnetic nanoparticles—Magnetic drug targeting
,”
J. Magn. Magn. Mater.
323
,
1404
1407
(
2011
).
3.
Alshareef
,
M.
,
Metrakos
,
N.
,
Juarez Perez
,
E.
,
Azer
,
F.
,
Yang
,
F.
,
Yang
,
X.
, and
Wang
,
G.
, “
Separation of tumor cells with dielectrophoresis-based microfluidic chip
,”
Biomicrofluidics
7
,
011803
(
2013
).
4.
Aris
,
R.
, “
On the dispersion of a solute in a fluid flowing through a tube
,”
Proc. R. Soc. London A: Math. Phys. Eng. Sci.
235
,
67
77
(
1956
).
5.
Arnold
,
V.
and
Meshalkin
,
L.
, “
Seminar led by an Kolmogorov on selected problems of analysis (1958-1959)
,”
Usp. Mat. Nauk
15
,
20
24
(
1960
).
6.
Algatheem
,
A. M.
,
Gilbert
,
A. D.
, and
Hillier
,
A. S.
, “
Zonostrophic instabilities in magnetohydrodynamic Kolmogorov flow
,”
Geophys. Astrophys. Fluid Dyn.
117
,
357
396
(
2023
).
7.
Balmforth
,
N. J.
and
Young
,
Y.-N.
, “
Stratified Kolmogorov flow
,”
J. Fluid Mech.
450
,
131
167
(
2002
).
8.
Barton
,
N.
, “
On the method of moments for solute dispersion
,”
J. Fluid Mech.
126
,
205
218
(
1983
).
9.
Berman
,
S. A.
,
Ferguson
,
K. S.
,
Bizzak
,
N.
,
Solomon
,
T. H.
, and
Mitchell
,
K. A.
, “
Noise-induced aggregation of swimmers in the Kolmogorov flow
,”
Front. Phys.
9
,
816663
(
2022
).
10.
Bondarenko
,
N.
,
Gak
,
M.
, and
Dolzhanskii
,
F.
, “
Laboratory and theoretical models of plane periodic flow
,”
Akad. Nauk. SSSR Fizika Atmosfery i Okeana
15
,
1017
1026
(
1979
).
11.
Borgnino
,
M.
,
Boffetta
,
G.
,
Cencini
,
M.
,
De Lillo
,
F.
, and
Gustavsson
,
K.
, “
Alignment of elongated swimmers in a laminar and turbulent Kolmogorov flow
,”
Phys. Rev. Fluids
7
,
074603
(
2022
).
12.
Burgess
,
J. M.
,
Bizon
,
C.
,
McCormick
,
W.
,
Swift
,
J.
, and
Swinney
,
H. L.
, “
Instability of the Kolmogorov flow in a soap film
,”
Phys. Rev. E
60
,
715
(
1999
).
13.
Carbone
,
V.
,
Veltri
,
P.
, and
Bruno
,
R.
, “
Experimental evidence for differences in the extended self-similarity scaling laws between fluid and magnetohydrodynamic turbulent flows
,”
Phys. Rev. Lett.
75
,
3110
(
1995
).
14.
Chatwin
,
P. C.
, “
On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes
,”
J. Fluid Mech.
71
,
513
527
(
1975
).
15.
Christov
,
I. C.
and
Stone
,
H. A.
, “
Shear dispersion in dense granular flows
,”
Granular Matter
16
,
509
515
(
2014
).
16.
Das
,
P.
,
Sarifuddin
,
Rana
,
J.
, and
Mandal
,
P. K.
, “
Unsteady solute dispersion in the presence of reversible and irreversible reactions
,”
Proc. R. Soc. A
478
,
20220127
(
2022
).
17.
Das
,
P.
,
Sarifuddin
,
Rana
,
J.
, and
Mandal
,
P. K.
, “
Solute dispersion in transient Casson fluid flow through stenotic tube with exchange between phases
,”
Phys. Fluids
33
,
061907
(
2021
).
18.
Das
,
S.
,
Mahata
,
K.
,
Patne
,
R.
,
Kumar
,
S.
, and
Rana
,
J.
, “
Unsteady solute dispersion in large arteries under periodic body acceleration
,”
Phys. Fluids
36
,
101909
(
2024
).
19.
Debnath
,
S.
,
Jiang
,
W.
,
Guan
,
M.
, and
Chen
,
G.
, “
Effect of ring-source release on dispersion process in Poiseuille flow with wall absorption
,”
Phys. Fluids
34
,
027106
(
2022
).
20.
Decuzzi
,
P.
,
Causa
,
F.
,
Ferrari
,
M.
, and
Netti
,
P. A.
, “
The effective dispersion of nanovectors within the tumor microvasculature
,”
Ann. Biomed. Eng.
34
,
633
641
(
2006
).
21.
Eckstein
,
E. C.
,
Bailey
,
D. G.
, and
Shapiro
,
A. H.
, “
Self-diffusion of particles in shear flow of a suspension
,”
J. Fluid Mech.
79
,
191
208
(
1977
).
22.
Furlani
,
E.
and
Ng
,
K.
, “
Analytical model of magnetic nanoparticle transport and capture in the microvasculature
,”
Phys. Rev. E
73
,
061919
(
2006
).
23.
Furlani
,
E. J.
and
Furlani
,
E. P.
, “
A model for predicting magnetic targeting of multifunctional particles in the microvasculature
,”
J. Magn. Magn. Mater.
312
,
187
193
(
2007
).
24.
Fylladitakis
,
E. D.
et al, “
Kolmogorov flow: Seven decades of history
,”
JAMP
06
,
2227
(
2018
).
25.
Gill
,
W.
,
Sankarasubramanian
,
R.
, and
Taylor
,
G. I.
, “
Dispersion of a non-uniform slug in time-dependent flow
,”
Proc. R. Soc. London A. Math. Phys. Sci.
322
,
101
117
(
1971
).
26.
Gill
,
W.-N.
, “
A note on the solution of transient dispersion problems
,”
Proc. R. Soc. London A. Math. Phys. Sci.
298
,
335
339
(
1967
).
27.
Gill
,
W. N.
and
Sankarasubramanian
,
R.
, “
Exact analysis of unsteady convective diffusion
,”
Proc. R. Soc. London A. Math. Phys. Sci.
316
,
341
350
(
1970
).
28.
Griffiths
,
I.
and
Stone
,
H. A.
, “
Axial dispersion via shear-enhanced diffusion in colloidal suspensions
,”
Europhys. Lett.
97
,
58005
(
2012
).
29.
Hoh
,
N. J.
and
Zia
,
R. N.
, “
Force-induced diffusion in suspensions of hydrodynamically interacting colloids
,”
J. Fluid Mech.
795
,
739
783
(
2016
).
30.
Jaensson
,
N. O.
,
Mitrias
,
C.
,
Hulsen
,
M. A.
, and
Anderson
,
P. D.
, “
Shear-induced migration of rigid particles near an interface between a Newtonian and a viscoelastic fluid
,”
Langmuir
34
,
1795
1806
(
2018
).
31.
Jeffrey
,
D.
and
Onishi
,
Y.
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
261
290
(
1984
).
32.
Joshi
,
C. H.
,
Kamm
,
R. D.
,
Drazen
,
J. M.
, and
Slutsky
,
A. S.
, “
An experimental study of gas exchange in laminar oscillatory flow
,”
J. Fluid Mech.
133
,
245
254
(
1983
).
33.
Legras
,
B.
,
Villone
,
B.
, and
Frisch
,
U.
, “
Dispersive stabilization of the inverse cascade for the Kolmogorov flow
,”
Phys. Rev. Lett.
82
,
4440
(
1999
).
34.
Leighton
,
D.
and
Acrivos
,
A.
, “
Measurement of shear-induced self-diffusion in concentrated suspensions of spheres
,”
J. Fluid Mech.
177
,
109
131
(
1987
).
35.
Leighton
,
D.
and
Acrivos
,
A.
, “
The shear-induced migration of particles in concentrated suspensions
,”
J. Fluid Mech.
181
,
415
439
(
1987
).
36.
Lopez
,
M.
and
Graham
,
M. D.
, “
Shear-induced diffusion in dilute suspensions of spherical or nonspherical particles: Effects of irreversibility and symmetry breaking
,”
Phys. Fluids
19
,
073602
(
2007
).
37.
Lopez
,
M.
and
Graham
,
M. D.
, “
Enhancement of mixing and adsorption in microfluidic devices by shear-induced diffusion and topography-induced secondary flow
,”
Phys. Fluids
20
,
053304
(
2008
).
38.
Lucas
,
D.
and
Kerswell
,
R.
, “
Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains
,”
J. Fluid Mech.
750
,
518
554
(
2014
).
39.
Manela
,
A.
and
Zhang
,
J.
, “
The effect of compressibility on the stability of wall-bounded Kolmogorov flow
,”
J. Fluid Mech.
694
,
29
49
(
2012
).
40.
Mazumder
,
B. S.
and
Das
,
S. K.
, “
Effect of boundary reaction on solute dispersion in pulsatile flow through a tube
,”
J. Fluid Mech.
239
,
523
549
(
1992
).
41.
Mei
,
C.
, “
Dispersion of suspension in a
steady
shear flow
,” in
Lecture Notes Fluid Dynamics
(
MIT
,
2002
), Vol. 1.
42.
Mei
,
C. C.
,
Auriault
,
J.-L.
, and
Ng
,
C.-O.
, “
Some applications of the homogenization theory
,”
Adv. Appl. Mech.
32
,
277
348
(
1996
).
43.
Mei
,
C. C.
and
Vernescu
,
B.
,
Homogenization Methods for Multiscale Mechanics
(
World Scientific
,
2010
).
44.
Meshalkin
,
L.
and
Sinai
,
I. G.
, “
Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid
,”
J. Appl. Math. Mech.
25
,
1700
1705
(
1961
).
45.
Mody
,
V. V.
,
Cox
,
A.
,
Shah
,
S.
,
Singh
,
A.
,
Bevins
,
W.
, and
Parihar
,
H.
, “
Magnetic nanoparticle drug delivery systems for targeting tumor
,”
Appl. Nanosci.
4
,
385
392
(
2014
).
46.
Mountrakis
,
L.
,
Lorenz
,
E.
, and
Hoekstra
,
A.
, “
Scaling of shear-induced diffusion and clustering in a blood-like suspension
,”
Europhys. Lett.
114
,
14002
(
2016
).
47.
Musacchio
,
S.
and
Boffetta
,
G.
, “
Turbulent channel without boundaries: The periodic Kolmogorov flow
,”
Phys. Rev. E
89
,
023004
(
2014
).
48.
Ndenda
,
J.
,
Shaw
,
S.
, and
Njagarah
,
J.
, “
Solute dispersion of drug carrier during magnetic drug targeting for blood flow through a microvessel
,”
J. Appl. Phys.
130
,
024701
(
2021
).
49.
Ng
,
C. O.
, “
Dispersion in steady and oscillatory flows through a tube with reversible and irreversible wall reactions
,”
Proc. R. Soc. London A. Math. Phys. Sci.
462
,
481
515
(
2006
).
50.
Omori
,
T.
,
Ishikawa
,
T.
,
Imai
,
Y.
, and
Yamaguchi
,
T.
, “
Shear-induced diffusion of red blood cells in a semi-dilute suspension
,”
J. Fluid Mech.
724
,
154
174
(
2013
).
51.
Pal
,
P. B.
,
Singh
,
S.
, and
Murthy
,
P.
, “
Solute dispersion in unsteady and viscous flow regimes of a non-Newtonian fluid flow with periodic body acceleration/deceleration
,”
Phys. Fluids
37
,
023113
(
2025
).
52.
Phelan
,
F. R.
,
Hughes
,
N. R.
, and
Pathak
,
J. A.
, “
Chaotic mixing in microfluidic devices driven by oscillatory cross flow
,”
Phys. Fluids
20
,
023101
(
2008
).
53.
Poddar
,
N.
,
Das
,
D.
,
Dhar
,
S.
, and
Mondal
,
K. K.
, “
On scalar transport in an oscillatory Couette–Poiseuille flow under the effects of heterogeneous and bulk chemical reactions: A multi-scale approach
,”
Phys. Fluids
35
,
043617
(
2023
).
54.
Poddar
,
N.
,
Dhar
,
S.
,
Mazumder
,
B. S.
, and
Mondal
,
K. K.
, “
An exact analysis of scalar transport in hydromagnetic flow between two parallel plates: A multi-scale approach
,”
Proc. R. Soc. A
477
,
20200830
(
2021
).
55.
Ponetti
,
G.
,
Sammartino
,
M.
, and
Sciacca
,
V.
, “
Transitions in a stratified Kolmogorov flow
,”
Ricerche Mat.
66
,
189
199
(
2017
).
56.
Price
,
P. M.
,
Mahmoud
,
W. E.
,
Al-Ghamdi
,
A. A.
, and
Bronstein
,
L. M.
, “
Magnetic drug delivery: Where the field is going
,”
Front. Chem.
6
,
619
(
2018
).
57.
Radha
,
S.
,
Barik
,
S.
, and
Poddar
,
N.
, “
Effects of bulk and wall chemical reactions on hydrodynamic dispersion of a solute in a couple stress fluid
,”
Phys. Rev. Fluids
10
,
014502
(
2025
).
58.
Rana
,
J.
,
Das
,
P.
,
Sarifuddin
,
Mandal
,
P. K.
, and
Patne
,
R.
, “
Dispersion of a non-uniform solute slug in pulsatile viscoelastic fluid flow
,”
Phys. Fluids
36
,
091909
(
2024
).
59.
Rana
,
J.
and
Liao
,
S.
, “
A general analytical approach to study solute dispersion in non-Newtonian fluid flow
,”
Eur. J. Mech. B/Fluids
77
,
183
200
(
2019
).
60.
Rana
,
J.
and
Murthy
,
P.
, “
Solute dispersion in pulsatile Casson fluid flow in a tube with wall absorption
,”
J. Fluid Mech.
793
,
877
914
(
2016
).
61.
Rana
,
J.
and
Murthy
,
P.
, “
Unsteady solute dispersion in Herschel-Bulkley fluid in a tube with wall absorption
,”
Phys. Fluids
28
,
111903
(
2016
).
62.
Rana
,
J.
and
Murthy
,
P.
, “
Unsteady solute dispersion in non-Newtonian fluid flow in a tube with wall absorption
,”
Proc. R. Soc. London A. Math. Phys. Sci.
472
,
20160294
(
2016
).
63.
Rana
,
J.
and
Murthy
,
P.
, “
Unsteady solute dispersion in small blood vessels using a two-phase Casson model
,”
Proc. R. Soc. London A. Math. Phys. Sci.
473
,
20170427
(
2017
).
64.
Reutov
,
V.
and
Rybushkina
,
G.
, “
Transition to the dynamical chaos and anomalous transport of a passive scalar in the annular Kolmogorov flow
,”
Phys. Fluids
32
,
106601
(
2020
).
65.
Romano
,
F.
, “
Stability of generalized Kolmogorov flow in a channel
,”
Phys. Fluids
33
,
024106
(
2021
).
66.
Roy
,
A. K.
and
Shaw
,
S.
, “
Shear augmented microvascular solute transport with a two-phase model: Application in nanoparticle assisted drug delivery
,”
Phys. Fluids
33
,
031904
(
2021
).
67.
Russel
,
W. B.
,
Russel
,
W.
,
Saville
,
D. A.
, and
Schowalter
,
W. R.
,
Colloidal Dispersions
(
Cambridge University Press
,
1991
).
68.
Saha
,
G.
,
Poddar
,
N.
,
Mondal
,
K. K.
, and
Wang
,
P.
, “
Evolution of concentration distribution and removal of a solute in magnetohydrodynamics channel flow: Effects of buoyancy-driven force and induced magnetic field
,”
Proc. A
480
,
20240091
(
2024
).
69.
Sankarasubramanian
,
R.
and
Gill
,
W. N.
, “
Unsteady convective diffusion with interphase mass transfer
,”
Proc. R. Soc. London A. Math. Phys. Sci.
333
,
115
132
(
1973
).
70.
Santamaria
,
F.
,
De Lillo
,
F.
,
Cencini
,
M.
, and
Boffetta
,
G.
, “
Gyrotactic trapping in laminar and turbulent Kolmogorov flow
,”
Phys. Fluids
26
,
111901
(
2014
).
71.
Secomb
,
T. W.
, “
Blood flow in the microcirculation
,”
Annu. Rev. Fluid Mech.
49
,
443
461
(
2017
).
72.
Sharp
,
M. K.
, “
Shear-augmented dispersion in non-Newtonian fluids
,”
Ann. Biomed. Eng.
21
,
407
415
(
1993
).
73.
Shaw
,
S.
,
Murthy
,
P.
, and
Sibanda
,
P.
, “
Magnetic drug targeting in a permeable microvessel
,”
Microvasc. Res.
85
,
77
85
(
2013
).
74.
Shipley
,
R.
,
Waters
,
S.
, and
Ellis
,
M. J.
, “
Definition and validation of operating equations for poly (vinyl alcohol)-poly (lactide-co-glycolide) microfiltration membrane-scaffold bioreactors
,”
Biotechnol. Bioeng.
107
,
382
392
(
2010
).
75.
Singh
,
S.
and
Murthy
,
P.
, “
Unsteady solute dispersion in non-Newtonian fluid flow in a tube with wall absorption—Deviation from the gaussianity
,”
Phys. Fluids
34
,
061908
(
2022
).
76.
Singh
,
S.
and
Murthy
,
P.
, “
Unsteady solute dispersion in pulsatile Luo and Kuang blood flow (K-L model) in a tube with wall reactive absorption
,”
J. Non-Newtonian Fluid Mech.
310
,
104928
(
2022
).
77.
Singh
,
S.
and
Murthy
,
P.
, “
Significance of skewness and kurtosis on the solute dispersion in pulsatile Carreau–Yasuda fluid flow in a tube with wall absorption
,”
J. Fluid Mech.
962
,
A42
(
2023
).
78.
Sommeria
,
J.
, “
Experimental study of the two-dimensional inverse energy cascade in a square box
,”
J. Fluid Mech.
170
,
139
168
(
1986
).
79.
Squires
,
T. M.
and
Quake
,
S. R.
, “
Microfluidics: Fluid physics at the nanoliter scale
,”
Rev. Mod. Phys.
77
,
977
1026
(
2005
).
80.
Surendran
,
A. N.
,
Zhou
,
R.
, and
Lin
,
Y.
, “
Microfluidic devices for magnetic separation of biological particles: A review
,”
J. Med. Devices
15
,
024001
(
2021
).
81.
Tabeling
,
P.
,
Perrin
,
B.
, and
Fauve
,
S.
, “
Instability of a linear array of forced vortices
,”
Europhys. Lett.
3
,
459
(
1987
).
82.
Takeda
,
S-i
,
Mishima
,
F.
,
Fujimoto
,
S.
,
Izumi
,
Y.
, and
Nishijima
,
S.
, “
Development of magnetically targeted drug delivery system using superconducting magnet
,”
J. Magn. Magn. Mater.
311
,
367
371
(
2007
).
83.
Taylor
,
G. I.
, “
Dispersion of soluble matter in solvent flowing slowly through a tube
,”
Proc. R. Soc. London A. Math. Phys. Sci.
219
,
186
203
(
1953
).
84.
Watson
,
E.
, “
Diffusion in oscillatory pipe flow
,”
J. Fluid Mech.
133
,
233
244
(
1983
).
85.
Wu
,
Z.
and
Chen
,
G.
, “
Approach to transverse uniformity of concentration distribution of a solute in a solvent flowing along a straight pipe
,”
J. Fluid Mech.
740
,
196
213
(
2014
).
86.
Zaidi
,
N. S.
,
Sohaili
,
J.
,
Muda
,
K.
, and
Sillanpää
,
M.
, “
Magnetic field application and its potential in water and wastewater treatment systems
,”
Sep. Purif. Rev.
43
,
206
240
(
2014
).
87.
Zarraga
,
I. E.
and
Leighton
,
D. T.
, Jr
, “
Measurement of an unexpectedly large shear-induced self-diffusivity in a dilute suspension of spheres
,”
Phys. Fluids
14
,
2194
2201
(
2002
).
88.
Zhang
,
H.
,
Pham
,
P.
,
Metzger
,
B.
,
Kopelevich
,
D. I.
, and
Butler
,
J. E.
, “
Effect of particle roughness on shear-induced diffusion
,”
Phys. Rev. Fluids
8
,
064303
(
2023
).
89.
Zhou
,
J.
and
Papautsky
,
I.
, “
Size-dependent enrichment of leukocytes from undiluted whole blood using shear-induced diffusion
,”
Lab Chip
19
,
3416
3426
(
2019
).
You do not currently have access to this content.