The porous and fluffy pappus structure of the dandelion is crucial for its stable flight. The pappus angle can be adjusted automatically in response to humidity to regulate flight capabilities. This study investigated the effect of pappus angle on flight dynamics using custom-made molds to fabricate dandelions with varying pappus angles. Aerodynamic drag was measured across wind speeds (0.10.8ms1) using an air-bearing-based drag balance, while a hot-wire anemometer and particle image velocimetry analyzed wake vortex structures. Results showed that dandelions exhibit higher drag coefficients at low wind speeds, with larger pappus angles increasing drag and wake stability at higher Reynolds numbers. Smaller pappus angles led to lower local porosity, stronger shear effects, and rapid wake instability. Natural dandelions demonstrated superior vortex growth and spatial stability at high Reynolds numbers compared to artificial ones, highlighting the advantages of their complex three-dimensional pappus structure. Additionally, lateral vortex diffusion was constrained when the pappus angle exceeded 140°, limited by local porosity. These findings could inspire efficient unpowered aircraft designs.

1.
S.
Minami
and
A.
Azuma
, “
Various flying modes of wind-dispersal seeds
,”
J. Theor. Biol.
225
,
1
14
(
2003
).
2.
D.
Greene
and
E. A.
Johnson
, “
The aerodynamics of plumed seeds
,”
Funct. Ecol.
4
,
117
125
(
1990
).
3.
O.
Tackenberg
,
P.
Poschlod
, and
S.
Kahmen
, “
Dandelion seed dispersal: The horizontal wind speed does not matter for long-distance dispersal - It is updraft!
,”
Plant Biol.
5
,
451
454
(
2003
).
4.
V.
Casseau
,
G. D.
Croon
,
D.
Izzo
, and
C.
Pandolfi
, “
Morphologic and aerodynamic considerations regarding the plumed seeds of Tragopogon pratensis and their implications for seed dispersal
,”
PLoS One
10
,
e0125040
(
2015
).
5.
R.
Nathan
,
G. G.
Katul
,
H. S.
Horn
,
S. M.
Thomas
,
R.
Oren
,
R.
Avissar
,
S. W.
Pacala
, and
S. A.
Levin
, “
Mechanisms of long-distance dispersal of seeds by wind
,”
Nature
418
,
409
413
(
2002
).
6.
L. G.
Holm
,
J. D.
Doll
,
E.
Holm
,
J. V.
Pancho
, and
J. P.
Herberger
,
World Weeds: Natural Histories and Distribution
(
Wiley
,
1997
).
7.
D.
Lentink
,
W. B.
Dickson
,
J. L.
van Leeuwen
, and
M. H.
Dickinson
, “
Leading-edge vortices elevate lift of autorotating plant seeds
,”
Science
324
,
1438
1440
(
2009
).
8.
R. A.
Fauli
,
J.
Rabault
, and
A.
Carlson
, “
Effect of wing fold angles on the terminal descent velocity of double-winged autorotating seeds, fruits, and other diaspores
,”
Phys. Rev. E
100
,
013108
(
2019
).
9.
Q.
Meng
,
Q.
Wang
,
K.
Zhao
,
P.
Wang
,
P.
Liu
,
H.
Liu
, and
L.
Jiang
, “
Hydroactuated configuration alteration of fibrous dandelion pappi: Toward self-controllable transport behavior
,”
Adv. Funct. Mater.
26
,
7378
7385
(
2016
).
10.
J.
Yang
,
H.
Zhang
,
A.
Berdin
,
W.
Hu
, and
H.
Zeng
, “
Dandelion‐inspired, wind‐dispersed polymer‐assembly controlled by light
,”
Adv. Sci.
10
,
2206752
(
2023
).
11.
V.
Iyer
,
H.
Gaensbauer
,
T. L.
Daniel
, and
S.
Gollakota
, “
Wind dispersal of battery-free wireless devices
,”
Nature
603
,
427
433
(
2022
).
12.
M.
Sherman
and
M.
Hassanalian
, “
Design, fabrication, and testing of dandelion-inspired flying sensors for mars exploration
,” AIAA 2021-0962,
2020
.
13.
M.
Seale
,
A.
Kiss
,
S.
Bovio
,
I. M.
Viola
,
E.
Mastropaolo
,
A.
Boudaoud
, and
N.
Nakayama
, “
Dandelion pappus morphing is actuated by radially patterned material swelling
,”
Nat. Commun.
13
,
2498
(
2021
).
14.
C.
Cummins
,
M.
Seale
,
A.
Macente
,
D.
Certini
,
E.
Mastropaolo
,
I. M.
Viola
, and
N.
Nakayama
, “
A separated vortex ring underlies the flight of the dandelion
,”
Nature
562
,
414
418
(
2018
).
15.
Y.
Dong
,
K.
Hu
,
Y.
Wang
, and
Z.
Zhang
, “
The steady vortex and enhanced drag effects of dandelion seeds immersed in low-Reynolds-number flow
,”
AIP Adv.
11
,
085320
(
2021
).
16.
R.
Nathan
,
F. M.
Schurr
,
O.
Spiegel
,
O.
Steinitz
,
A.
Trakhtenbrot
, and
A.
Tsoar
, “
Mechanisms of long-distance seed dispersal
,”
Trends Ecol. Evol.
23
(
11
),
638
647
(
2008
).
17.
F.-S.
Qiu
,
T.-B.
He
, and
W.-Y.
Bao
, “
Effect of porosity on separated vortex rings of dandelion seeds
,”
Phys. Fluids
32
,
113104
(
2020
).
18.
P. G.
Ledda
,
L.
Siconolfi
,
F.
Viola
,
S.
Camarri
, and
F.
Gallaire
, “
Flow dynamics of a dandelion pappus: A linear stability approach
,”
Phys. Rev. Fluids
4
,
071901
(
2019
).
19.
S.
Li
,
D.
Pan
,
J.
Li
, and
X.
Shao
, “
Drag and wake structure of a quasi-dandelion pappus model at low and moderate Reynolds numbers: The effects of filament width
,”
Phys. Fluids
33
,
121904
(
2021
).
20.
F.-S.
Qiu
,
B.-W.
Wang
,
Y.-M.
Du
, and
H.-Y.
Qian
, “
Numerical investigation on the flow characteristics of model dandelion seeds with angles of attitude
,”
Phys. Fluids
33
,
113107
(
2021
).
21.
L.
Qin
,
Z.
Jian
,
Y.
Xu
, and
L.
Ma
, “
On the attitude stability of flying dandelion seeds
,”
Phys. Fluids
35
,
081904
(
2023
).
22.
Y.
Shigenaga
and
H.
Hasegawa
, “
Wake flow visualization of a dandelion pappus with posture change
,”
J. Fluid Sci. Technol.
18
,
JFST0019
(
2023
).
23.
F.-S.
Qiu
,
H.-Y.
Qian
,
Y.-M.
Du
, and
C.-J.
Li
, “
The pappus angle as a key factor in the entire separation of a vortex ring from a dandelion seed's pappus
,”
Phys. Fluids
34
,
083101
(
2022
).
24.
Z.
Xu
,
X.
Chang
,
H.
Meng
, and
D.
Gao
, “
Dynamic wake behind a dandelion pappus: PIV and smoke-wire visualization
,”
J. Vis.
26
,
779
(
2023
).
25.
Y.
Dong
,
Y.
Ni
,
K.
Hu
,
T.
Zhang
,
Z.
Zhang
, and
Y.
Wang
, “
Transition to turbulence in the wake of dandelion-like spoke disk
,”
Phys. Fluids
35
,
104113
(
2023
).
26.
E.
Barta
and
D.
Weihs
, “
Creeping flow around a finite row of slender bodies in close proximity
,”
J. Fluid Mech.
551
,
1
17
(
2006
).
27.
Q.
Fan
,
L.-T.
Fu
,
Z.-L.
Huang
,
C.-L.
Xin
, and
H.-H.
Gu
, “
Flow patterns and drag coefficients of dandelion pappus models consisting of two oppositely oriented filament layers
,”
Phys. Fluids
36
,
075198
(
2024
).
28.
W.
Zhou
,
X.
Liu
,
Y.
Sun
,
X.
Lyu
,
Y.
He
, and
W.
Yuan
, “
Design and validation of an air-bearing-based micro skin-friction balance for small area samples
,”
Exp. Therm. Fluid Sci.
164
,
111433
(
2025
).
29.
M. C.
Andersen
, “
An analysis of variability in seed settling velocities of several wind-dispersed Asteraceae
,”
Am. J. Bot.
79
(
10
),
1087
1091
(
1992
).
You do not currently have access to this content.