In a fluid environment, flagellated microswimmers propel themselves by rotating their flagella. The morphology of these flagella significantly influences forward speed, swimming efficiency, and directional stability, which are critical for their survival. This study begins by simulating the three-dimensional motion trajectories of microswimmers to analyze their kinematic characteristics. The simulation results demonstrate that microswimmers can actively adjust their forward direction by modifying the orientation of their flagella. We subsequently perform numerical simulations to visualize the flow fields generated by a microswimmer and examine the hydrodynamic interactions between the cell body and the flagella, focusing on their impacts on forward speed and swimming efficiency. We conclude that forward speed and swimming efficiency are closely related to the filament radius, pitch angle, and contour length of the flagella, while the yaw angle of locomotion is determined by the helix radius and contour length of the flagella. We conclude that the pitch angle for maximum forward speed is slightly smaller than that for maximum swimming efficiency, which suggests that microswimmers can effectively alternate between states of maximum forward speed and maximum swimming efficiency by fine-tuning their pitch angle and adapting to varying ecological conditions. These morphological characteristics of microswimmers may result from species competition and natural selection. This research establishes an optimized model for microswimmers, providing valuable insights for the design of enhanced microrobots tailored to specific applications.

1.
M.
Silverman
and
M.
Simon
, “
Flagellar rotation and the mechanism of bacterial motility
,”
Nature
249
,
73
74
(
1974
).
2.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
3.
E.
Lauga
, “
Bacterial hydrodynamics
,”
Annu. Rev. Fluid Mech.
48
,
105
130
(
2016
).
4.
J. S.
Guasto
,
R.
Rusconi
, and
R.
Stocker
, “
Fluid mechanics of planktonic microorganisms
,”
Annu. Rev. Fluid Mech.
44
,
373
400
(
2012
).
5.
D.
Roszak
and
R.
Colwell
, “
Survival strategies of bacteria in the natural environment
,”
Microbiol. Rev.
51
,
365
379
(
1987
).
6.
K. D.
Young
, “
The selective value of bacterial shape
,”
Microbiol. Mol. Biol. Rev.
70
,
660
703
(
2006
).
7.
J. G.
Mitchell
and
K.
Kogure
, “
Bacterial motility: Links to the environment and a driving force for microbial physics
,”
FEMS Microbiol. Ecol.
55
,
3
16
(
2006
).
8.
S. S.
Justice
,
D. A.
Hunstad
,
L.
Cegelski
, and
S. J.
Hultgren
, “
Morphological plasticity as a bacterial survival strategy
,”
Nat. Rev. Microbiol.
6
,
162
168
(
2008
).
9.
S. E.
Spagnolie
and
E.
Lauga
, “
Comparative hydrodynamics of bacterial polymorphism
,”
Phys. Rev. Lett.
106
,
058103
(
2011
).
10.
M. C.
van Teeseling
,
M. A.
de Pedro
, and
F.
Cava
, “
Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting
,”
Front. Microbiol.
8
,
1264
(
2017
).
11.
N.
Maki
,
J. E.
Gestwicki
,
E. M.
Lake
,
L. L.
Kiessling
, and
J.
Adler
, “
Motility and chemotaxis of filamentous cells of Escherichia coli
,”
J. Bacteriol.
182
,
4337
4342
(
2000
).
12.
R.
Stocker
and
J. R.
Seymour
, “
Ecology and physics of bacterial chemotaxis in the ocean
,”
Microbiol. Mol. Biol. Rev.
76
,
792
812
(
2012
).
13.
E. M.
Purcell
, “
The efficiency of propulsion by a rotating flagellum
,”
Proc. Natl. Acad. Sci. U. S. A.
94
,
11307
11311
(
1997
).
14.
G.
Li
and
J. X.
Tang
, “
Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells
,”
Biophys. J.
91
,
2726
2734
(
2006
).
15.
S.
Chattopadhyay
,
R.
Moldovan
,
C.
Yeung
, and
X.
Wu
, “
Swimming efficiency of bacterium Escherichia coli
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
13712
13717
(
2006
).
16.
J.
Najafi
,
M. R.
Shaebani
,
T.
John
,
F.
Altegoer
,
G.
Bange
, and
C.
Wagner
, “
Flagellar number governs bacterial spreading and transport efficiency
,”
Sci. Adv.
4
,
eaar6425
(
2018
).
17.
F. T.
Nguyen
and
M. D.
Graham
, “
Impacts of multiflagellarity on stability and speed of bacterial locomotion
,”
Phys. Rev. E
98
,
042419
(
2018
).
18.
L. J.
Fauci
and
R.
Dillon
, “
Biofluidmechanics of reproduction
,”
Annu. Rev. Fluid Mech.
38
,
371
394
(
2006
).
19.
S.
Bianchi
,
F.
Saglimbeni
, and
R.
Di Leonardo
, “
Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria
,”
Phys. Rev. X
7
,
011010
(
2017
).
20.
A.
Thawani
and
M. S.
Tirumkudulu
, “
Trajectory of a model bacterium
,”
J. Fluid Mech.
835
,
252
270
(
2018
).
21.
A.
Zöttl
and
J. M.
Yeomans
, “
Enhanced bacterial swimming speeds in macromolecular polymer solutions
,”
Nat. Phys.
15
,
554
558
(
2019
).
22.
R.
Colin
,
B.
Ni
,
L.
Laganenka
, and
V.
Sourjik
, “
Multiple functions of flagellar motility and chemotaxis in bacterial physiology
,”
FEMS Microbiol. Rev.
45
,
fuab038
(
2021
).
23.
K.
Drescher
,
R. E.
Goldstein
,
N.
Michel
,
M.
Polin
, and
I.
Tuval
, “
Direct measurement of the flow field around swimming microorganisms
,”
Phys. Rev. Lett.
105
,
168101
(
2010
).
24.
K.
Drescher
,
J.
Dunkel
,
L. H.
Cisneros
,
S.
Ganguly
, and
R. E.
Goldstein
, “
Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
10940
10945
(
2011
).
25.
A. J.
Mathijssen
,
D. O.
Pushkin
, and
J. M.
Yeomans
, “
Tracer trajectories and displacement due to a micro-swimmer near a surface
,”
J. Fluid Mech.
773
,
498
519
(
2015
).
26.
H.
Shum
,
E. A.
Gaffney
, and
D. J.
Smith
, “
Modelling bacterial behaviour close to a no-slip plane boundary: The influence of bacterial geometry
,”
Proc. R. Soc. A
466
,
1725
1748
(
2010
).
27.
K.
Son
,
F.
Menolascina
, and
R.
Stocker
, “
Speed-dependent chemotactic precision in marine bacteria
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
8624
8629
(
2016
).
28.
S. M.
Mousavi
,
G.
Gompper
, and
R. G.
Winkler
, “
Wall entrapment of peritrichous bacteria: A mesoscale hydrodynamics simulation study
,”
Soft Matter
16
,
4866
4875
(
2020
).
29.
J.
Tang
,
L. W.
Rogowski
,
X.
Zhang
, and
M. J.
Kim
, “
Flagellar nanorobot with kinetic behavior investigation and 3D motion
,”
Nanoscale
12
,
12154
12164
(
2020
).
30.
V.
Tokárová
,
A.
Sudalaiyadum Perumal
,
M.
Nayak
,
H.
Shum
,
O.
Kašpar
,
K.
Rajendran
,
M.
Mohammadi
,
C.
Tremblay
,
E. A.
Gaffney
,
S.
Martel
et al, “
Patterns of bacterial motility in microfluidics-confining environments
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2013925118
(
2021
).
31.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
, “
Microrobots for minimally invasive medicine
,”
Annu. Rev. Biomed. Eng.
12
,
55
85
(
2010
).
32.
F. Z.
Temel
and
S.
Yesilyurt
, “
Confined swimming of bio-inspired microrobots in rectangular channels
,”
Bioinspir. Biomim.
10
,
016015
(
2015
).
33.
C. S. X.
Ng
,
M. W. M.
Tan
,
C.
Xu
,
Z.
Yang
,
P. S.
Lee
, and
G. Z.
Lum
, “
Locomotion of miniature soft robots
,”
Adv. Mater.
33
,
2003558
(
2021
).
34.
S.
Palagi
and
P.
Fischer
, “
Bioinspired microrobots
,”
Nat. Rev. Mater.
3
,
113
124
(
2018
).
35.
H.
Zhou
,
C. C.
Mayorga-Martinez
,
S.
Pané
,
L.
Zhang
, and
M.
Pumera
, “
Magnetically driven micro and nanorobots
,”
Chem. Rev.
121
,
4999
5041
(
2021
).
36.
H.-W.
Huang
,
F. E.
Uslu
,
P.
Katsamba
,
E.
Lauga
,
M. S.
Sakar
, and
B. J.
Nelson
, “
Adaptive locomotion of artificial microswimmers
,”
Sci. Adv.
5
,
eaau1532
(
2019
).
37.
D.
Jeffrey
and
Y.
Onishi
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
261
290
(
1984
).
38.
B.
Liu
,
L.
Chen
, and
J.
Zhang
, “
Effective and efficient modeling of the hydrodynamics for bacterial flagella
,”
Phys. Fluids
37
,
011903
(
2025
).
39.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
2012
), Vol.
1
.
40.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth-Heinemann
,
2013
).
41.
A. L.
Nord
,
A.
Biquet-Bisquert
,
M.
Abkarian
,
T.
Pigaglio
,
F.
Seduk
,
A.
Magalon
, and
F.
Pedaci
, “
Dynamic stiffening of the flagellar hook
,”
Nat. Commun.
13
,
2925
(
2022
).
42.
J. J.
Abbott
,
K. E.
Peyer
,
M. C.
Lagomarsino
,
L.
Zhang
,
L.
Dong
,
I. K.
Kaliakatsos
, and
B. J.
Nelson
, “
How should microrobots swim?
,”
Int. J. Robot. Res.
28
,
1434
1447
(
2009
).
43.
A.
Acemoglu
and
S.
Yesilyurt
, “
Effects of geometric parameters on swimming of microorganisms with single helical flagellum in circular channels
,”
Biophys. J.
106
,
1537
1547
(
2014
).
44.
G.
Vizsnyiczai
,
G.
Frangipane
,
S.
Bianchi
,
F.
Saglimbeni
,
D.
Dell'Arciprete
, and
R.
Di Leonardo
, “
A transition to stable one-dimensional swimming enhances E. coli motility through narrow channels
,”
Nat. Commun.
11
,
2340
(
2020
).
45.
M. A.
Constantino
,
M.
Jabbarzadeh
,
H. C.
Fu
, and
R.
Bansil
, “
Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape
,”
Sci. Adv.
2
,
e1601661
(
2016
).
46.
P.
Benhal
,
D.
Quashie
,
U. K.
Cheang
, and
J.
Ali
, “
Propulsion kinematics of achiral microswimmers in viscous fluids
,”
Appl. Phys. Lett.
118
,
204103
(
2021
).
47.
S.
Kamdar
,
S.
Shin
,
P.
Leishangthem
,
L. F.
Francis
,
X.
Xu
, and
X.
Cheng
, “
The colloidal nature of complex fluids enhances bacterial motility
,”
Nature
603
,
819
823
(
2022
).
48.
J. S.
Dai
, “
Euler–rodrigues formula variations, quaternion conjugation and intrinsic connections
,”
Mech. Mach. Theory
92
,
144
152
(
2015
).
49.
R. M.
Murray
,
Z.
Li
, and
S. S.
Sastry
,
A Mathematical Introduction to Robotic Manipulation
(
CRC Press
,
2017
).
50.
M. J.
Kühn
,
F. K.
Schmidt
,
B.
Eckhardt
, and
K. M.
Thormann
, “
Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
6340
6345
(
2017
).
51.
T. H.
Tan
,
A.
Mietke
,
J.
Li
,
Y.
Chen
,
H.
Higinbotham
,
P. J.
Foster
,
S.
Gokhale
,
J.
Dunkel
, and
N.
Fakhri
, “
Odd dynamics of living chiral crystals
,”
Nature
607
,
287
293
(
2022
).
52.
Y.
Yawata
,
O. X.
Cordero
,
F.
Menolascina
,
J.-H.
Hehemann
,
M. F.
Polz
, and
R.
Stocker
, “
Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
5622
5627
(
2014
).
53.
N. C.
Darnton
and
H. C.
Berg
, “
Force-extension measurements on bacterial flagella: Triggering polymorphic transformations
,”
Biophys. J.
92
,
2230
2236
(
2007
).
54.
K.
Son
,
J. S.
Guasto
, and
R.
Stocker
, “
Bacteria can exploit a flagellar buckling instability to change direction
,”
Nat. Phys.
9
,
494
498
(
2013
).
55.
R.
Vogel
and
H.
Stark
, “
Rotation-induced polymorphic transitions in bacterial flagella
,”
Phys. Rev. Lett.
110
,
158104
(
2013
).
56.
S.
Koyasu
and
Y.
Shirakihara
, “
Caulobacter crescentus flagellar filament has a right-handed helical form
,”
J. Mol. Biol.
173
,
125
130
(
1984
).
57.
M.
Fujii
,
S.
Shibata
, and
S.-I.
Aizawa
, “
Polar, peritrichous, and lateral flagella belong to three distinguishable flagellar families
,”
J. Mol. Biol.
379
,
273
283
(
2008
).
You do not currently have access to this content.