Iron-based contrast agents have recently garnered attention as positive (T1) magnetic resonance imaging (MRI) contrast agents providing an alternative to gadolinium-based contrast agents mired with the nephrogenic systemic fibrosis downsides. Whereas the magnetic cores of iron enable T1 MRI contrast enhancement, the non-magnetic materials (e.g., polymers) usually deployed to stabilize the metal cores affect bulk water diffusion to the iron centers. We present an innovative approach in designing biocompatible complex of asphaltene-derived carbon dots (ACDs) with iron (ACD-Fe), where the ACDs enhanced hydrophilicity improves accessibility of Fe3+ centers to water molecules to achieve effective tumor MRI. The ACD-Fe design strategy involves synthesizing ACDs at a lower temperature (80 °C) with high mass yield, followed by iron doping via easy complexation with FeCl3 at room temperature. The ACD-Fe complex thus serves as tissue-tolerant T1 MRI contrast agent (r1 = 1.33 mM−1s−1) for tumor imaging. This report pioneers the use of asphaltene-derived materials in MRI and tumor imaging, presenting a low-cost, scalable synthesis protocol for the ACD-Fe complex as an effective T1 MRI contrast agent.

1.
O. U.
Akakuru
,
M. Z.
Iqbal
,
M.
Saeed
,
C.
Liu
,
T.
Paunesku
,
G.
Woloschak
,
N. S.
Hosmane
, and
A.
Wu
, “
The transition from metal-based to metal-free contrast agents for T1 magnetic resonance imaging enhancement
,”
Bioconjugate Chem.
30
(
9
),
2264
2286
(
2019
).
2.
A.
Rajca
,
Y.
Wang
,
M.
Boska
,
J. T.
Paletta
,
A.
Olankitwanit
,
M. A.
Swanson
,
D. G.
Mitchell
,
S. S.
Eaton
,
G. R.
Eaton
, and
S.
Rajca
, “
Organic radical contrast agents for magnetic resonance imaging
,”
J. Am. Chem. Soc.
134
(
38
),
15724
15727
(
2012
).
3.
H.
Chen
,
G. D.
Wang
,
X.
Sun
,
T.
Todd
,
F.
Zhang
,
J.
Xie
, and
B.
Shen
, “
Mesoporous silica as nanoreactors to prepare Gd-encapsulated carbon dots of controllable sizes and magnetic properties
,”
Adv. Funct. Mater.
26
(
22
),
3973
3982
(
2016
).
4.
F.
Du
,
L.
Zhang
,
L.
Zhang
,
M.
Zhang
,
A.
Gong
,
Y.
Tan
,
J.
Miao
,
Y.
Gong
,
M.
Sun
,
H.
Ju
,
C.
Wu
, and
S.
Zou
, “
Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors
,”
Biomaterials
121
,
109
120
(
2017
).
5.
Y.
Xu
,
X. H.
Jia
,
X. B.
Yin
,
X. W.
He
, and
Y. K.
Zhang
, “
Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging
,”
Anal. Chem.
86
(
24
),
12122
12129
(
2014
).
6.
C.
Han
,
H.
Xu
,
R.
Wang
,
K.
Wang
,
Y.
Dai
,
Q.
Liu
,
M.
Guo
,
J.
Li
, and
K.
Xu
, “
Synthesis of a multifunctional manganese(ii)–carbon dots hybrid and its application as an efficient magnetic-fluorescent imaging probe for ovarian cancer cell imaging
,”
J. Mater. Chem. B
4
(
35
),
5798
5802
(
2016
).
7.
Q.
Jia
,
J.
Ge
,
W.
Liu
,
X.
Zheng
,
S.
Chen
,
Y.
Wen
,
H.
Zhang
, and
P.
Wang
, “
A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy
,”
Adv. Mater.
30
(
13
),
1706090
(
2018
).
8.
D.
Pan
,
A. H.
Schmieder
,
S. A.
Wickline
, and
G. M.
Lanza
, “
Manganese-based MRI contrast agents: Past, present and future
,”
Tetrahedron
67
(
44
),
8431
8444
(
2011
).
9.
B.
Gallez
,
C.
Baudelet
,
J.
Adline
,
M.
Geurts
, and
N.
Delzenne
, “
Accumulation of manganese in the brain of mice after intravenous injection of manganese-based contrast agents
,”
Chem. Res. Toxicol.
10
(
4
),
360
363
(
1997
).
10.
H. V. T.
Nguyen
,
Q.
Chen
,
J. T.
Paletta
,
P.
Harvey
,
Y.
Jiang
,
H.
Zhang
,
M. D.
Boska
,
M. F.
Ottaviani
,
A.
Jasanoff
,
A.
Rajca
, and
J. A.
Johnson
, “
Nitroxide-based macromolecular contrast agents with unprecedented transverse relaxivity and stability for magnetic resonance imaging of tumors
,”
ACS Cent. Sci.
3
(
7
),
800
811
(
2017
).
11.
Y.
Kohgo
,
K.
Ikuta
,
T.
Ohtake
,
Y.
Torimoto
, and
J.
Kato
, “
Body iron metabolism and pathophysiology of iron overload
,”
Int. J. Hematol.
88
(
1
),
7
15
(
2008
).
12.
T.
Macher
,
J.
Totenhagen
,
J.
Sherwood
,
Y.
Qin
,
D.
Gurler
,
M. S.
Bolding
, and
Y.
Bao
, “
Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging
,”
Adv. Funct. Mater.
25
(
3
),
490
494
(
2015
).
13.
T.
Luo
,
Y.
Nie
,
J.
Lu
,
Q.
Bi
,
Z.
Cai
,
X.
Song
,
H.
Ai
, and
R.
Jin
, “
Iron doped carbon dots based nanohybrids as a tetramodal imaging agent for gene delivery promotion and photothermal-chemodynamic cancer synergistic theranostics
,”
Mater. Des.
208
,
109878
(
2021
).
14.
J.
Wang
,
X.
Hu
,
H.
Ding
,
X.
Huang
,
M.
Xu
,
Z.
Li
,
D.
Wang
,
X.
Yan
,
Y.
Lu
,
Y.
Xu
,
Y.
Chen
,
P. C.
Morais
,
Y.
Tian
,
R.-Q.
Zhang
, and
H.
Bi
, “
Fluorine and nitrogen Co-doped carbon dot complexation with Fe(III) as a T1 contrast agent for magnetic resonance imaging
,”
ACS Appl. Mater. Interfaces
11
(
20
),
18203
18212
(
2019
).
15.
Q.
Huang
,
Y.
Liu
,
L.
Zheng
,
L.
Wu
,
Z.
Zhou
,
J.
Chen
,
W.
Chen
, and
H.
Zhao
, “
Biocompatible iron(II)-doped carbon dots as T1-weighted magnetic resonance contrast agents and fluorescence imaging probes
,”
Microchim. Acta
186
(
8
),
492
(
2019
).
16.
Q.
Zhang
,
Z.
Wu
,
J.
Song
,
B.
Zhang
,
Q.
Duan
,
D.
Song
,
L.
Hu
,
S.
Li
, and
S.
Sang
, “
MRI/fluorescence dual-mode probe: Its simple preparation method and imaging application in vitro
,”
Biomed. Opt. Express
13
(
6
),
3493
3502
(
2022
).
17.
S. S.
Nazeer
,
A.
Saraswathy
,
N.
Nimi
,
E.
Sarathkumar
,
A. N.
Resmi
,
S. J.
Shenoy
, and
R. S.
Jayasree
, “
Fluorescent carbon dots tailored iron oxide nano hybrid system for in vivo optical imaging of liver fibrosis
,”
Method. Appl. Fluoresc.
11
(
2
),
24002
(
2023
).
18.
H.
Wang
,
J.
Shen
,
Y.
Li
,
Z.
Wei
,
G.
Cao
,
Z.
Gai
,
K.
Hong
,
P.
Banerjee
, and
S.
Zhou
, “
Magnetic iron oxide–fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy
,”
Biomater. Sci.
2
(
6
),
915
923
(
2014
).
19.
F.
Mohandes
,
H.
Dehghani
,
S.
Angizi
,
A.
Ramedani
,
B.
Dolatyar
,
M.
Ramezani Farani
,
K.
Müllen
, and
A.
Simchi
, “
Magneto-fluorescent contrast agents based on carbon Dots@Ferrite nanoparticles for tumor imaging
,”
J. Magn. Magn. Mater.
561
,
169686
(
2022
).
20.
S.
Chung
,
R. A.
Revia
, and
M.
Zhang
, “
Graphene quantum dots and their applications in bioimaging, biosensing, and therapy
,”
Adv. Mater.
33
(
22
),
1904362
(
2021
).
21.
S. A.
Prabhu
,
V.
Kavithayeni
,
R.
Suganthy
, and
K.
Geetha
, “
Graphene quantum dots synthesis and energy application: A review
,”
Carbon Lett.
31
(
1
),
1
12
(
2021
).
22.
K. L.
Schroeder
,
R. V.
Goreham
, and
T.
Nann
, “
Graphene quantum dots for theranostics and bioimaging
,”
Pharm. Res.
33
(
10
),
2337
2357
(
2016
).
23.
Y.
Xu
,
S.
Wang
,
X.
Hou
,
Z.
Sun
,
Y.
Jiang
,
Z.
Dong
,
Q.
Tao
,
J.
Man
, and
Y.
Cao
, “
Coal-derived nitrogen, phosphorus and sulfur co-doped graphene quantum dots: A promising ion fluorescent probe
,”
Appl. Surf. Sci.
445
,
519
526
(
2018
).
24.
T.
Das
,
B. K.
Saikia
,
H. P.
Dekaboruah
,
M.
Bordoloi
,
D.
Neog
,
J. J.
Bora
,
J.
Lahkar
,
B.
Narzary
,
S.
Roy
, and
D.
Ramaiah
, “
Blue-fluorescent and biocompatible carbon dots derived from abundant low-quality coals
,”
J. Photochem. Photobiol, B
195
,
1
11
(
2019
).
25.
Y.
Li
,
Y.
Shi
,
X.
Song
,
Z.
Zhao
,
N.
Zhang
, and
C.
Hao
, “
Pitch-derived carbon quantum dots as fluorescent probe for selective and sensitive detection of ferric ions and bioimaging
,”
J. Photochem. Photobiol, A
412
,
113253
(
2021
).
26.
B.
Geng
,
D.
Yang
,
F.
Zheng
,
C.
Zhang
,
J.
Zhan
,
Z.
Li
,
D.
Pan
, and
L.
Wang
, “
Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging
,”
New J. Chem.
41
(
23
),
14444
14451
(
2017
).
27.
J.
Bai
,
N.
Xiao
,
Y.
Wang
,
H.
Li
,
C.
Liu
,
J.
Xiao
,
Y.
Wei
,
Z.
Guo
, and
J.
Qiu
, “
Coal tar pitch derived nitrogen-doped carbon dots with adjustable particle size for photocatalytic hydrogen generation
,”
Carbon
174
,
750
756
(
2021
).
28.
L.
Nilewski
,
K.
Mendoza
,
A. S.
Jalilov
,
V.
Berka
,
G.
Wu
,
W. K. A.
Sikkema
,
A.
Metzger
,
R.
Ye
,
R.
Zhang
,
D. X.
Luong
,
T.
Wang
,
E.
McHugh
,
P. J.
Derry
,
E. L.
Samuel
,
T. A.
Kent
,
A.-L.
Tsai
, and
J. M.
Tour
, “
Highly oxidized graphene quantum dots from coal as efficient antioxidants
,”
ACS Appl. Mater. Interfaces
11
(
18
),
16815
16821
(
2019
).
29.
A.
Kovalchuk
,
K.
Huang
,
C.
Xiang
,
A. A.
Martí
, and
J. M.
Tour
, “
Luminescent polymer composite films containing coal-derived graphene quantum dots
,”
ACS Appl. Mater. Interfaces
7
(
47
),
26063
26068
(
2015
).
30.
X.
Feng
and
Y.
Zhang
, “
A simple and green synthesis of carbon quantum dots from coke for white light-emitting devices
,”
RSC Adv.
9
(
58
),
33789
33793
(
2019
).
31.
S.
Das
,
T.
Thundat
, and
S. K.
Mitra
, “
Asphaltene migration and separation in presence of aggregation in electroosmotic–electrophoretic microchannel transport
,”
Colloids Surf, A
446
,
23
32
(
2014
).
32.
F. S.
AlHumaidan
,
M. S.
Rana
,
H. M. S.
Lababidi
, and
A.
Hauser
, “
Pyrolysis of asphaltenes derived from residual oils and their thermally treated pitch
,”
ACS Omega
5
(
38
),
24412
24421
(
2020
).
33.
O. U.
Akakuru
,
L.
Martin-Alarcon
,
S.
Bryant
, and
M.
Trifkovic
, “
Unraveling Water-Based Lubrication with Carbon Dots of Asphaltene Origin
,”
ACS Appl. Mater. Interfaces
16
,
16699
(
2024
).
34.
J.
Kuang
,
A. A.
Melendez-Alvarez
,
J.
Yarbrough
,
M.
Garcia-Bermudes
,
M.
Tavakkoli
,
D. S.
Abdallah
,
S.
Punnapala
, and
F. M.
Vargas
, “
Assessment of the performance of asphaltene inhibitors using a multi-section packed bed column
,”
Fuel
241
,
247
254
(
2019
).
35.
O. U.
Akakuru
,
J.
Xing
,
S.
Huang
,
Z. M.
Iqbal
,
S.
Bryant
,
A.
Wu
, and
M.
Trifkovic
, “
Leveraging Non-radiative transitions in asphaltenes-derived carbon dots for cancer photothermal therapy
,”
Small
21
,
e2404591
(
2025
).
36.
H.-C.
Hao
,
S.
Chen
,
Z.-X.
Tan
, and
H.
Jiang
, “
Preparation of high-yield carbon quantum dots and paper-based sensors from biomass wastes by mechano-chemical method
,”
J. Environ. Chem. Eng.
11
(
6
),
111406
(
2023
).
37.
R.
Ye
,
C.
Xiang
,
J.
Lin
,
Z.
Peng
,
K.
Huang
,
Z.
Yan
,
N. P.
Cook
,
E. L. G.
Samuel
,
C.-C.
Hwang
,
G.
Ruan
,
G.
Ceriotti
,
A.-R. O.
Raji
,
A. A.
Martí
, and
J. M.
Tour
, “
Coal as an abundant source of graphene quantum dots
,”
Nat. Commun.
4
(
1
),
2943
(
2013
).
38.
L.
Lin
and
S.
Zhang
, “
Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes
,”
Chem. Commun.
48
(
82
),
10177
10179
(
2012
).
39.
J.
Zhang
,
Y.
Yuan
,
G.
Liang
, and
S.-H.
Yu
, “
Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis
,”
Adv. Sci.
2
(
4
),
1500002
(
2015
).
40.
B.
De
and
N.
Karak
, “
A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice
,”
RSC Adv.
3
(
22
),
8286
8290
(
2013
).
41.
P.-C.
Hsu
,
Z.-Y.
Shih
,
C.-H.
Lee
, and
H.-T.
Chang
, “
Synthesis and analytical applications of photoluminescent carbon nanodots
,”
Green Chem.
14
(
4
),
917
920
(
2012
).
42.
N.
Jamaludin
,
T. L.
Tan
,
A. S. K.
Zaman
,
A. R.
Sadrolhosseini
, and
S. A.
Rashid
, “
Acid-free hydrothermal-extraction and molecular structure of carbon quantum dots derived from empty fruit bunch biochar
,”
Materials
13
(
15
),
3356
(
2020
).
43.
J.
Wang
,
C.-F.
Wang
, and
S.
Chen
, “
Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns
,”
Angew. Chem. Int. Ed.
51
(
37
),
9297
9301
(
2012
).
44.
Y.
Dong
,
J.
Lin
,
Y.
Chen
,
F.
Fu
,
Y.
Chi
, and
G.
Chen
, “
Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals
,”
Nanoscale
6
(
13
),
7410
7415
(
2014
).
45.
Q.
Liu
,
J.
Zhang
,
H.
He
,
G.
Huang
,
B.
Xing
,
J.
Jia
, and
C.
Zhang
, “
Green preparation of high yield fluorescent graphene quantum dots from coal-tar-pitch by mild oxidation
,”
Nanomaterials
8
(
10
),
844
(
2018
).
46.
W.
Du
,
X.
Xu
,
H.
Hao
,
R.
Liu
,
D.
Zhang
,
F.
Gao
, and
Q.
Lu
, “
Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp
,”
Sci. China Chem.
58
(
5
),
863
870
(
2015
).
47.
D.
Rodríguez-Padrón
,
M.
Algarra
,
L. A. C.
Tarelho
,
J.
Frade
,
A.
Franco
,
G.
de Miguel
,
J.
Jiménez
,
E.
Rodríguez-Castellón
, and
R.
Luque
, “
Catalyzed microwave-assisted preparation of carbon quantum dots from lignocellulosic residues
,”
ACS Sustainable Chem. Eng.
6
(
6
),
7200
7205
(
2018
).
48.
L.
Lin
,
Y.
Xu
,
S.
Zhang
,
I. M.
Ross
,
A. C.
Ong
, and
D. A.
Allwood
, “
Fabrication and luminescence of monolayered boron nitride quantum dots
,”
Small
10
(
1
),
60
65
(
2014
).
49.
T.
Jin
,
S.
Tsuboi
,
A.
Komatsuzaki
,
Y.
Imamura
,
Y.
Muranaka
,
T.
Sakata
, and
H.
Yasuda
, “
Enhancement of aqueous stability and fluorescence brightness of indocyanine green using small calix[4]arene micelles for near-infrared fluorescence imaging
,”
Med. Chem. Commun.
7
(
4
),
623
631
(
2016
).
50.
P. T. K.
Chin
,
M. M.
Welling
,
S. C. J.
Meskers
,
R. A.
Valdes Olmos
,
H.
Tanke
, and
F. W. B.
van Leeuwen
, “
Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence
,”
Eur. J. Nucl. Med. Mol. Imaging
40
(
8
),
1283
1291
(
2013
).
51.
R. B.
Mujumdar
,
L. A.
Ernst
,
S. R.
Mujumdar
,
C. J.
Lewis
, and
A. S.
Waggoner
, “
Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters
,”
Bioconjugate Chem.
4
(
2
),
105
111
(
1993
).
52.
S.
Saad
,
A. S.
Zeraati
,
S.
Roy
,
M. A.
Shahriar Rahman Saadi
,
J. R.
Radović
,
A.
Rajeev
,
K. A.
Miller
,
S.
Bhattacharyya
,
S. R.
Larter
,
G.
Natale
,
U.
Sundararaj
,
P. M.
Ajayan
,
M. M.
Rahman
, and
M. G.
Kibria
, “
Transformation of petroleum asphaltenes to carbon fibers
,”
Carbon
190
,
92
103
(
2022
).
53.
F.
Qin
,
X.
Tian
,
Z.
Guo
, and
W.
Shen
, “
Asphaltene-based porous carbon nanosheet as electrode for supercapacitor
,”
ACS Sustainable Chem. Eng.
6
(
11
),
15708
15719
(
2018
).
54.
R.
Ma
,
Y.
Zhou
,
C.
Hu
,
M.
Yang
,
F.
Wang
,
K.
Yan
,
Q.
Liu
, and
J.
Wang
, “
Post iron-doping of activated nitrogen-doped carbon spheres as a high-activity oxygen reduction electrocatalyst
,”
Energy Storage Mater.
13
,
142
150
(
2018
).
55.
P.
Manivasagan
,
N.
Quang Bui
,
S.
Bharathiraja
,
M.
Santha Moorthy
,
Y. O.
Oh
,
K.
Song
,
H.
Seo
,
M.
Yoon
, and
J.
Oh
, “
Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer
,”
Sci. Rep.
7
,
43593
(
2017
).
56.
B. H.
Kim
,
N.
Lee
,
H.
Kim
,
K.
An
,
Y. I.
Park
,
Y.
Choi
,
K.
Shin
,
Y.
Lee
,
S. G.
Kwon
,
H. B.
Na
,
J.-G.
Park
,
T.-Y.
Ahn
,
Y.-W.
Kim
,
W. K.
Moon
,
S. H.
Choi
, and
T.
Hyeon
, “
Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents
,”
J. Am. Chem. Soc.
133
(
32
),
12624
12631
(
2011
).
57.
W.
Xiao
,
P.
Legros
,
P.
Chevallier
,
J.
Lagueux
,
J. K.
Oh
, and
M.-A.
Fortin
, “
Superparamagnetic iron oxide nanoparticles stabilized with multidentate block copolymers for optimal vascular contrast in T1-weighted magnetic resonance imaging
,”
ACS Appl. Nano Mater.
1
(
2
),
894
907
(
2018
).
58.
L.
Zeng
,
W.
Ren
,
J.
Zheng
,
P.
Cui
, and
A.
Wu
, “
Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging
,”
Phys. Chem. Chem. Phys.
14
(
8
),
2631
2636
(
2012
).
59.
R.
Bhavesh
,
A. V.
Lechuga-Vieco
,
J.
Ruiz-Cabello
, and
F.
Herranz
, “
T1-MRI fluorescent iron oxide nanoparticles by microwave assisted synthesis
,”
Nanomaterials (Basel)
5
(
4
),
1880
1890
(
2015
).
60.
M.
Rohrer
,
H.
Bauer
,
J.
Mintorovitch
,
M.
Requardt
, and
H. J.
Weinmann
, “
Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths
,”
Investigative Radiology
40
,
715
724
(
2005
).
61.
P.
Caravan
,
C. T.
Farrar
,
L.
Frullano
, and
R.
Uppal
, “
Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents
,”
Contrast Media Mol.
4
(
2
),
89
100
(
2009
).
62.
V.
Jacques
,
S.
Dumas
,
W.-C.
Sun
,
J. S.
Troughton
,
M. T.
Greenfield
, and
P.
Caravan
, “
High relaxivity MRI contrast agents part 2: Optimization of inner- and second-sphere relaxivity
,”
Investigative radiology
45
(
10
),
613
624
(
2010
).
63.
A.
Datta
and
K. N.
Raymond
, “
Gd-hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents
,”
Acc. Chem. Res.
42
(
7
),
938
947
(
2009
).
64.
T. J.
Clough
,
L.
Jiang
,
K.-L.
Wong
, and
N. J.
Long
, “
Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents
,”
Nat. Commun.
10
(
1
),
1420
(
2019
).
65.
L.
Xia
,
C.
Zhang
,
M.
Li
,
K.
Wang
,
Y.
Wang
,
P.
Xu
, and
Y.
Hu
, “
Nitroxide-radicals–modified gold nanorods for in vivo CT/MRI-guided photothermal cancer therapy
,”
Int. J. Nanomed.
ume 13
(
null
),
7123
7134
(
2018
).
66.
R.
Qin
,
Y.
Feng
,
D.
Ding
,
L.
Chen
,
S.
Li
,
H.
Deng
,
S.
Chen
,
Z.
Han
,
W.
Sun
, and
H.
Chen
, “
Fe-coordinated carbon nanozyme dots as peroxidase-like nanozymes and magnetic resonance imaging contrast agents
,”
ACS Appl. Bio Mater.
4
(
7
),
5520
5528
(
2021
).
67.
G.
Potsi
,
A. B.
Bourlinos
,
V.
Mouselimis
,
K.
Poláková
,
N.
Chalmpes
,
D.
Gournis
,
S.
Kalytchuk
,
O.
Tomanec
,
P.
Błoński
,
M.
Medveď
,
P.
Lazar
,
M.
Otyepka
, and
R.
Zbořil
, “
Intrinsic photoluminescence of amine-functionalized graphene derivatives for bioimaging applications
,”
Appl. Mater. Today
17
,
112
122
(
2019
).
You do not currently have access to this content.