A numerical study focuses on the temporal evolution of fractional-order convective nanofluid flow along with entropy generation characteristics within a wavy square porous enclosure containing a circular cylinder. The application of fractional derivatives facilitates a more accurate representation of fluid flow dynamics, thermal transport, and entropy production. The governing equations are formulated as fractional partial differential equations, with momentum transport modeled using the Darcy–Brinkman–Forchheimer approach. The complete mathematical framework is solved using a robust numerical technique that integrates the implicit finite difference scheme (L1-scheme) for temporal discretization and the penalty finite element method for spatial discretization. The numerical investigation is carried out for various emerging parameters, including fractional-order parameters (α), Rayleigh number (Ra), Darcy number (Da), and porosity (ε). The results are displayed through contour plots of streamlines, isotherms, and local entropy generation, along with graphical plots of the mean Nusselt number, Bejan number, and total entropy generation. These findings offer valuable insights into the interplay between fractional-order parameter and flow parameters in influencing flow dynamics, thermal transport, and entropy generation. The study reveals that the fractional-order parameter (α) plays a pivotal role in governing the system's temporal evolution, with higher values of α significantly accelerating the rate of evolution.

1.
D. B.
Ingham
and
I.
Pop
,
Transport Phenomena in Porous Media
(
Elsevier
,
1998
).
2.
H.
Yin
,
M. E.
Zayed
,
Y.
Li
,
L.
Yang
,
Y.
Fan
,
Z.
Wang
,
L.
Yin
,
J.
Zhao
,
B. H.
Al-Kbodi
, and
S.
Rehman
, “
Thermo-economic performance of a leaky downhole coaxial geothermal system for maximizing geothermal energy production: Numerical investigation
,”
Renewable Energy
232
,
121082
(
2024
).
3.
A.
Agi
,
R.
Junin
, and
A.
Gbadamosi
, “
Mechanism governing nanoparticle flow behaviour in porous media: Insight for enhanced oil recovery applications
,”
Int. Nano Lett.
8
,
49
77
(
2018
).
4.
M.
Mehrpooya
,
F.
Ghafoorian
, and
S.
Farajyar
, “
3D-modeling of a coaxial borehole heat exchanger in Sahand field, northwest Iran considering the porous medium and presence of nanofluids
,”
Iran. J. Chem. Chem. Eng.
42
,
3898
3916
(
2023
); available at https://www.ijcce.ac.ir/article_704598_a72776459aec7106f3c9abed5f1a58b2.pdf.
5.
F.
Garoosi
,
F.
Hoseininejad
, and
M. M.
Rashidi
, “
Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids
,”
Energy
109
,
664
678
(
2016
).
6.
M.
Hatami
,
J.
Geng
, and
D.
Jing
, “
Enhanced efficiency in concentrated parabolic solar collector (CPSC) with a porous absorber tube filled with metal nanoparticle suspension
,”
Green Energy Environ.
3
,
129
137
(
2018
).
7.
Z.
Korei
,
S.
Benissaad
,
A. J.
Chamkha
,
F.
Berrahil
, and
A.
Filali
, “
Thermohydraulic and second law analyses during the cooling of an electronic device mounted in an open cavity equipped with magnetic nanofluid, magnetic field inducer, and porous media: A two-phase numerical investigation
,”
Int. Commun. Heat Mass Transfer
139
,
106497
(
2022
).
8.
K.
Khanafer
and
K.
Vafai
, “
Applications of nanofluids in porous medium: A critical review
,”
J. Therm. Anal. Calorim.
135
,
1479
1492
(
2019
).
9.
P. K.
Tyagi
,
R.
Kumar
, and
P. K.
Mondal
, “
A review of the state-of-the-art nanofluid spray and jet impingement cooling
,”
Phys. Fluids
32
,
121301
(
2020
).
10.
A.
Anisi
,
M.
Sheikholeslami
,
Z.
Khalili
, and
F. M.
Boora
, “
Optimizing solar panel performance with new algorithm incorporating duct with helical tape and hybrid nanofluid
,”
J. Taiwan Inst. Chem. Eng.
167
,
105908
(
2025
).
11.
M.
Mehrpooya
,
S. H.
Tabatabaei
,
F.
Pourfayaz
, and
B.
Ghorbani
, “
High-temperature hydrogen production by solar thermochemical reactors, metal interfaces, and nanofluid cooling
,”
J. Therm. Anal. Calorim.
145
,
2547
2569
(
2021
).
12.
V.
Kumar
,
S. V. S. S. N. V. G. Krishna
Murthy
, and
B. V. Rathish
Kumar
, “
Multi-force effect on fluid flow, heat and mass transfer, and entropy generation in a stratified fluid-saturated porous enclosure
,”
Math. Comput. Simul.
203
,
328
367
(
2023
).
13.
M.
Izadi
, “
Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber
,”
Chin. J. Chem. Eng.
28
,
1203
1213
(
2020
).
14.
S. E.
Ahmed
and
A. M.
Rashad
, “
Natural convection of micropolar nanofluids in a rectangular enclosure saturated with anisotropic porous media
,”
J. Por. Media
19
,
737
(
2016
).
15.
A.
Fattahi
,
N.
Hajialigol
,
M.
Delpisheh
, and
N.
Karimi
, “
Lattice-Boltzmann numerical simulation of double-diffusive natural convection and entropy generation in an n-shaped partially heated storage tank
,”
Eng. Anal. Boundary Elem.
146
,
105
118
(
2023
).
16.
D. K.
Mandal
,
N.
Biswas
,
N. K.
Manna
,
R. S. R.
Gorla
, and
A. J.
Chamkha
, “
Hybrid nanofluid magnetohydrodynamic mixed convection in a novel w-shaped porous system
,”
Int. J. Numer. Methods Heat Fluid Flow
33
,
510
544
(
2023
).
17.
D. K.
Mandal
,
N.
Biswas
,
N. K.
Manna
,
D. K.
Gayen
,
R. S. R.
Gorla
, and
A. J.
Chamkha
, “
Thermo-fluidic transport process in a novel M-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: Application of artificial neural network (ANN)
,”
Phys. Fluids
34
,
033608
(
2022
).
18.
A.
Halder
,
A.
Bhattacharya
,
N.
Biswas
,
N. K.
Manna
, and
D. K.
Mandal
, “
Convective heat transport and entropy generation in butterfly-shaped magneto-nanofluidic systems with bottom heating and top cooling
,”
Int. J. Numer. Methods Heat Fluid Flow
34
,
837
877
(
2024
).
19.
S.
Kumar
,
S. V. S. S. N. V. G. Krishna
Murthy
,
B. V.
Rathish
Kumar
, and
D.
Parmar
, “
Thermo-magnetic radiative flow in porous enclosure with deep-learning parameter estimation
,”
Int. J. Mech. Sci.
276
,
109366
(
2024
).
20.
S. R.
Jain
,
S.
Subhani
, and
R. S.
Kumar
, “
Numerical study on performance enhancement of a square enclosure with circular cylinder of varying geometries
,”
J. Therm. Anal. Calorim.
147
,
2579
2600
(
2022
).
21.
K.
Khanafer
and
K.
Vafai
, “
Effect of a circular cylinder and flexible wall on natural convective heat transfer characteristics in a cavity filled with a porous medium
,”
Appl. Therm. Eng.
181
,
115989
(
2020
).
22.
S.
Kumar
,
S. V. S. S. N. V. G.
Krishna Murthy
,
B. V. Rathish
Kumar
, and
D.
Parmar
, “
Convective heat transfer enhancement in an inverted t-shaped porous enclosure through vertical varying circular cylinder
,”
Numer. Heat Transfer B: Fund.
85
,
1236
1253
(
2024
).
23.
S.
Malik
and
A. K.
Nayak
, “
MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating
,”
Int. J. Heat Mass Transfer
111
,
329
345
(
2017
).
24.
B. M.
Cham
,
S.-U.
Islam
, and
Z.-U.
Islam
, “
Numerical study on natural convection in a saturated non Darcian porous medium under radiation and entropy generation effects
,”
Appl. Therm. Eng.
250
,
123491
(
2024
).
25.
V.
Kumar
,
S. V. S. S. N. V. G.
Krishna Murthy
, and
B. V.
Rathish Kumar
, “
Entropy generation in a chemically and thermally reinforced doubly stratified porous enclosure in a magnetic field
,”
Phys. Fluids
34
,
013307
(
2022
).
26.
G. S.
Mun
,
J. H.
Doo
, and
M. Y.
Ha
, “
Thermo-dynamic irreversibility induced by natural convection in square enclosure with inner cylinder. Part-I: Effect of tilted angle of enclosure
,”
Int. J. Heat Mass Transfer
97
,
1102
1119
(
2016
).
27.
M.
Hashan
,
L. N.
Jahan
,
S.
Imtiaz
,
M. E.
Hossain
et al, “
Modelling of fluid flow through porous media using memory approach: A review
,”
Math. Comput. Simul.
177
,
643
673
(
2020
).
28.
R.
Garra
,
F.
Falcini
,
V.
Voller
, and
G.
Pagnini
, “
A generalized Stefan model accounting for system memory and non-locality
,”
Int. Commun. Heat Mass Transfer
114
,
104584
(
2020
).
29.
W.
Cai
and
P.
Wang
, “
Fractional modeling of temperature-dependent mechanical behaviors for glassy polymers
,”
Int. J. Mech. Sci.
232
,
107607
(
2022
).
30.
V. V.
Kulish
and
J. L.
Lage
, “
Application of fractional calculus to fluid mechanics
,”
J. Fluids Eng.
124
,
803
806
(
2002
).
31.
H.
Karani
,
M.
Rashtbehesht
,
C.
Huber
, and
R. L.
Magin
, “
Onset of fractional-order thermal convection in porous media
,”
Phys. Rev. E
96
,
063105
(
2017
).
32.
R.
Magin
,
Fractional Calculus in Bioengineering
(
Begell House Publishers
,
2006
).
33.
D.
Parmar
,
B. V. Rathish
Kumar
,
S. V. S. S. N. V. G. Krishna
Murthy
, and
S.
Kumar
, “
Erratum: Numerical study of entropy generation in magneto-convective flow of nanofluid in porous enclosure using fractional order non-Darcian model [Phys. Fluids 35, 097142 (2023)]
,”
Phys. Fluids
35
,
129902
(
2023
).
34.
D.
Parmar
,
B. V.
Rathish Kumar
,
S. V. S. S. N. V. G.
Krishna Murthy
, and
S.
Kumar
, “
Numerical study of entropy generation in magneto-convective flow of nanofluid in porous enclosure using fractional order non-Darcian model
,”
Phys. Fluids
35
,
097142
(
2023
).
35.
D.
Parmar
,
S. V. S. S. N. V. G.
Krishna Murthy
,
B. V.
Rathish Kumar
, and
S.
Kumar
, “
Entropy generation for thermo-magnetic fractional order convective flow in complex porous enclosures: A numerical study
,”
Int. J. Numer. Methods Heat Fluid Flow
34
,
1087
1116
(
2024
).
36.
Y.
Chen
,
W.
Jiang
,
X.
Zhang
,
Y.
Geng
, and
G.
Bai
, “
Spatial fractional permeability and fractional thermal conductivity models of fractal porous medium
,”
Phys. Fluids
34
,
073106
(
2022
).
37.
O.
Makinde
,
Z. H.
Khan
,
A.
Trounev
,
W. A.
Khan
, and
R.
Ahmad
, “
Fractional dynamics of entropy generation in unsteady mixed convection of a reacting nanofluid over a slippery permeable plate in Darcy–Forchheimer porous medium
,”
ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
104
,
e202400083
(
2024
).
38.
D.
Li
,
H.-L.
Liao
,
W.
Sun
,
J.
Wang
, and
J.
Zhang
, “
Analysis of l1-Galerkin FEMs for time-fractional nonlinear parabolic problems
,”
Commun. Comput. Phys.
24
,
86
103
(
2018
).
39.
C.-C.
Cho
, “
Natural convection of Cu-water nanofluid in enclosed cavity with porous effect and wavy surface based on energy-flux-vector visualization method
,”
Phys. Fluids
32
,
103607
(
2020
).
40.
H. C.
Brinkman
, “
The viscosity of concentrated suspensions and solutions
,”
J. Chem. Phys.
20
,
571
571
(
1952
).
41.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
(
Clarendon Press
,
1873
), Vol.
2
, pp.
3408
3425
.
42.
W.
Zhang
,
X.
Cai
, and
S.
Holm
, “
Time-fractional heat equations and negative absolute temperatures
,”
Comput. Math. Appl.
67
,
164
171
(
2014
).
43.
J. F.
Gómez-Aguilar
,
M.
Miranda-Hernández
,
M.
López-López
,
V. M.
Alvarado-Martínez
, and
D.
Baleanu
, “
Modeling and simulation of the fractional space-time diffusion equation
,”
Commun. Nonlinear Sci. Numer. Simul.
30
,
115
127
(
2016
).
44.
K. S.
Miller
and
B.
Ross
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
(
Wiley
,
1993
).
45.
J. N.
Reddy
,
An Introduction to the Finite Element Method
(
McGraw-Hill New York
,
2013
), Vol.
3
.
46.
M. R. S.
Ammi
,
I.
Jamiai
, and
D. F.
Torres
, “
A finite element approximation for a class of Caputo time-fractional diffusion equations
,”
Comput. Math. Appl.
78
,
1334
1344
(
2019
).
47.
B.
Kim
,
D.
Lee
,
M.
Ha
, and
H.
Yoon
, “
A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations
,”
Int. J. Heat Mass Transfer
51
,
1888
1906
(
2008
).
You do not currently have access to this content.