A series of small-scale tunnel fire experiments were conducted to investigate the effect of different sealing speeds on the temperature attenuation characteristics of hot smoke under single-sided and double-sided sealing conditions. The internal temperature fields for both sealing methods were measured and compared. The results indicate that, within the experimental range of this study, sealing the tunnel entrance causes smoke accumulation and temperature rise inside the tunnel. Under natural ventilation conditions with the same fire source power, the maximum temperature for single-sided sealing is slightly higher than that for double-sided sealing. The faster the sealing speed, the lower the maximum temperature at the ceiling, due to reduced smoke accumulation and increased entrainment of air. The longitudinal temperature attenuation of fire smoke in the entire spreading region shows similar variation characteristics for both sealing methods. The previously proposed longitudinal temperature distribution equation below the ceiling centerline for sealed tunnel fires was revised, and a functional relationship between sealing speed and distance was established. A comparison with existing model experiment results and previous experimental data verified that the proposed equation falls within an acceptable error range. This study can provide a reference for firefighters to assess the temperature distribution and attenuation characteristics of fire smoke in underground spaces.

1.
Alpert
,
R. L.
, “
Calculation of response time of ceiling-mounted fire detectors
,”
Fire Technol.
8
(
3
),
181
195
(
1972
).
2.
Chen
,
C. K.
,
Xiao
,
H.
,
Wang
,
N. N.
,
Shi
,
C. L.
,
Zhu
,
C. X.
, and
Liu
,
X. Y.
, “
Experimental investigation of pool fire behavior to different tunnel-end ventilation opening areas by sealing
,”
Tunnelling Underground Space Technol.
63
,
106
117
(
2017
).
3.
Chen
,
C. K.
,
Zhu
,
C. X.
,
Liu
,
X. Y.
, and
Yu
,
N. H.
, “
Experimental investigation on the effect of asymmetrical sealing on tunnel fire behavior
,”
Int. J. Heat Mass Transfer
92
,
55
65
(
2016
).
4.
Chen
,
C.
,
Zhang
,
Y.
,
Lei
,
P.
, and
Jiao
,
W.
, “
A study for predicting the maximum gas temperature beneath ceiling in sealing tactics against tunnel fire
,”
Tunnelling Underground Space Technol.
98
,
103275
(
2020
).
5.
Delichatsios
,
M. A.
, “
The flow of fire gases under a beamed ceiling
,”
Combust. Flame
43
(
1
),
1
10
(
1981
).
6.
Fu
,
Y. Y.
,
Experimental Studies on Influences of Tunnel Sidewall on Characteristics of Combustion and Ceiling Jet of Oil Pool Fire
(
University of Science and Technology of China
,
2017
).
7.
Gannouni
,
S.
and
Ben Maad
,
R.
, “
Numerical study of the effect of blockage on critical velocity and backlayering length in longitudinally ventilated tunnel fires
,”
Tunnelling Underground Space Technol.
48
,
147
155
(
2015
).
8.
Gao
,
Z. H.
,
Ji
,
J.
,
Fan
,
C. G.
,
Sun
,
J. H.
, and
Zhu
,
J. P.
, “
Influence of sidewall restriction on the maximum ceiling gas temperature of buoyancy-driven thermal flow
,”
Energy Build.
84
,
13
20
(
2014
).
9.
Gao
,
Z. H.
,
Ji
,
J.
,
Wan
,
H. X.
,
Zhu
,
J. P.
, and
Sun
,
J. H.
, “
Experimental investigation on transverse ceiling flame length and temperature distribution of sidewall confined tunnel fire
,”
Fire Saf. J.
91
,
371
379
(
2017
).
10.
Gao
,
Z.
,
Zhao
,
P.
,
Fan
,
Y.
, and
Chen
,
Y.
, “
Influence of the closed end on the smoke propagation and temperature profile in urban utility tunnel fires
,”
Tunnelling Underground Space Technol.
150
,
105852
(
2024
).
11.
Gao
,
Y.
,
Zhu
,
G.
,
Gu
,
S.
,
Tao
,
H.
, and
Zhao
,
Y.
, “
Experimental and numerical studies on ceiling maximum smoke temperature and longitudinal decay in a horseshoe shaped tunnel fire
,”
Case Stud. Therm. Eng.
12
,
134
142
(
2018
).
12.
Grant
,
G. B.
and
Drysdale
,
D. D.
, “
Estimating heat release rates from large–scale tunnel fires
,”
Fire Saf. Sci.
5
,
1213
1224
(
1997
).
13.
Haack
,
A.
,
Casale
,
E.
, and
Ingason
,
H.
,
EUREKA-Project EU 499: FIRETUN-Fires in Transport Tunnels, Report on Full Scale Tests
, edited by
S.
Stahlanwendung
(
Verlag u. Vertriebsges. mbH
,
Dusseldorf, Germany
,
1995
).
14.
Hu
,
L. H.
,
Chen
,
L. F.
,
Wu
,
L.
,
Li
,
Y. F.
,
Zhang
,
J. Y.
, and
Meng
,
N.
, “
An experimental investigation and correlation on buoyant gas temperature below ceiling in a slopping tunnel fire
,”
Appl. Therm. Eng.
51
,
246
254
(
2013b
).
15.
Hu
,
L. H.
,
Huo
,
R.
,
Li
,
Y. Z.
,
Wang
,
H. B.
, and
Chow
,
W. K.
, “
Full-scale burning tests on studying smoke temperature and velocity along a corridor
,”
Tunnelling Underground Space Technol.
20
(
3
),
223
229
(
2005
).
16.
Hu
,
L. H.
,
Huo
,
R.
, and
Chow
,
W. K.
, “
Studies on buoyancy-driven back-layering flow in tunnel fires
,”
Exp. Therm. Fluid Sci.
32
,
1468
1483
(
2008
).
17.
Hu
,
L. H.
,
Huo
,
R.
, and
Yang
,
D.
, “
Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow
,”
J. Hazard. Mater.
166
,
394
406
(
2009
).
18.
Hu
, L. H.
,
Huo
,
R.
,
Chow
,
W. K.
,
Wang
,
H. B.
, and
Yang
,
R. X.
, “
Decay of buoyant smoke layer temperature along the longitudinal direction in tunnel fires
,”
J. Appl. Fire Sci.
13
(
1
),
53
77
(
2004
).
19.
Hu
,
L. H.
,
Tang
,
W.
,
Chen
,
L. F.
, and
Yi
,
L.
, “
A non-dimensional global correlation of maximum gas temperature beneath ceiling with different blockage fire distance in a longitudinal ventilated tunnel
,”
Appl. Therm. Eng.
56
,
77
82
(
2013a
).
20.
Huang
,
Y.
,
Li
,
Y.
,
Dong
,
B.
,
Li
,
J.
, and
Liang
,
Q.
, “
Numerical investigation on the maximum ceiling temperature and longitudinal decay in a sealing tunnel fire
,”
Tunnelling Underground Space Technol.
72
,
120
130
(
2018
).
21.
Ingason
,
H.
and
Li
,
Y. Z.
, “
Model scale tunnel fire tests with longitudinal ventilation
,”
Fire Saf. J.
45
(
6
),
371
384
(
2010
).
22.
Ingason
,
H.
,
Li
,
Y. Z.
, and
Lönnermark
,
A.
, “
Runehamar tunnel fire tests
,”
Fire Saf. J.
71
,
134
149
(
2015a
).
23.
Ingason
,
H.
,
Li
,
Y. Z.
, and
Lönnermark
,
A.
,
Tunnel Fire Dynamic
, 1st ed. (
Springer
,
New York, London
,
2015b
), pp.
207
230
.
24.
Ji
,
J.
,
Wang
,
Z.
,
Ding
,
L.
,
Yu
,
L.
,
Gao
,
Z.
, and
Wan
,
H.
, “
Effects of ambient pressure on smoke movement and temperature distribution in inclined tunnel fires
,”
Int. J. Therm. Sci.
145
,
106006
(
2019
).
25.
Ji
,
J.
,
Wan
,
H.
,
Li
,
K.
,
Han
,
J.
, and
Sun
,
J.
, “
A numerical study on upstream maximum temperature in inclined urban road tunnel fires
,”
Int. J. Heat Mass Transfer
88
,
516
526
(
2015
).
26.
Ji
,
J.
,
Zhong
,
W.
,
Li
,
K. Y.
,
Shen
,
X. B.
,
Zhang
,
Y.
, and
Huo
,
R.
, “
A simplified calculation method on maximum smoke temperature under the ceiling in subway station fires
,”
Tunnelling Underground Space Technol.
26
(
3
),
490
496
(
2011
).
27.
Kunsch
,
J. P.
, “
Critical velocity and range of a fire-gas plume in a ventilated tunnel
,”
Atmos. Environ.
33
(
1
),
13
24
(
1998
).
28.
Kurioka
,
H.
,
Oka
,
Y.
,
Satoh
,
H.
, and
Sugawa
,
O.
, “
Fire properties in near field of square fire source with longitudinal ventilation in tunnels
,”
Fire Saf. J.
38
(
4
),
319
340
(
2003
).
29.
Li
,
Y.
,
Huang
,
F.
,
Ma
,
C.
, and
Tang
,
K.
, “
A simulation study on the smoke control effect with different smoke exhaust patterns and longitudinal air supply for ultra-wide tunnels
,”
Fire
5
,
72
(
2022
).
30.
Li
,
Y. Z.
and
Ingason
,
H.
, “
The maximum ceiling gas temperature in a large tunnel fire
,”
Fire Saf. J.
48
,
38
48
(
2012
).
31.
Li
,
Q.
,
Kang
,
J.
, and
Mei
,
J.
, “
Experimental study on the fire control and smoke transportation using sealing strategy in tunnel
,”
Tunnelling Underground Space Technol.
143
,
105488
(
2024
).
32.
Li
,
Y. Z.
,
Lei
,
B.
, and
Ingason
,
H.
, “
The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires
,”
Fire Saf. J.
46
,
204
210
(
2011
).
33.
Li
,
Y. Z.
,
Lei
,
B.
, and
Ingason
,
H.
, “
Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires
,”
Fire Saf. J.
45
(
6–8
),
361
370
(
2010
).
34.
Liu
,
F.
,
Yu
,
L. X.
,
Weng
,
M. C.
, and
Lu
,
X. L.
, “
Study on longitudinal temperature distribution of fire-induced ceiling flow in tunnels with different sectional coefficients
,”
Tunnelling Underground Space Technol.
54
,
49
60
(
2016
).
35.
McCaffrey
,
B. J.
and
Quintiere
,
J. G.
, “
Buoyancy driven countercurrent flows generated by fire source
,” in
Heat Transfer and Turbulent Buoyant Convection
, edited by
Spalding
,
D. B.
and
Afgan
,
N.
(
Hemisphere Publishing Co
.,
Washington, USA
,
1977
), pp.
457
472
.
36.
Morgan
,
H. P.
, “
Comments on ‘a note on smoke plumes from fires in multi-level shopping malls
,”
Fire Saf. J.
12
(1),
83
84
(
1987
).
37.
Peng
,
M.
,
Cheng
,
X. D.
,
Cong
,
W.
,
Yang
,
H.
,
Shahid
,
M. U.
,
Yuen
,
R.
, and
Zhang
,
H. P.
, “
Experimental study on temperature profile in long-narrow compartment fire with multiple lateral openings
,”
Tunnelling Underground Space Technol.
117
,
104018
(
2021
).
38.
Ren
,
R.
,
Zhou
,
H.
,
Hu
,
Z.
,
He
,
S.
, and
Wang
,
X.
, “
Statistical analysis of fire accidents in Chinese highway tunnels 2000–2016
,”
Tunnelling Underground Space Technol.
83
,
452
460
(
2019
).
39.
Tang
,
F.
,
Cao
,
Z. L.
,
Chen
,
Q.
,
Meng
,
N.
,
Wang
,
Q.
, and
Fan
,
C. G.
, “
Effect of blockage-heat source distance on maximum temperature of buoyancy-induced smoke flow beneath ceiling in a longitudinal ventilated tunnel
,”
Int. J. Heat Mass Transfer
109
,
683
688
(
2017b
).
40.
Tang
,
F.
,
Li
,
L. J.
,
Dong
,
M. S.
,
Wang
,
Q.
, and
Hu
,
L. H.
, “
Characterization of buoyant flow stratification behaviors by Richardson (Froude) number in a tunnel fire with complex combination of longitudinal ventilation and ceiling extraction
,”
Appl. Therm. Eng.
110
,
1021
1028
(
2017
).
41.
Tang
,
F.
,
Li
,
L. J.
,
Chen
,
W. K.
,
Tao
,
C. F.
, and
Zhan
,
Z.
, “
Studies on ceiling maximum thermal smoke temperature and longitudinal decay in a tunnel fire with different transverse gas burner locations
,”
Appl. Therm. Eng.
110
,
1674
1681
(
2017a
).
42.
Weng
,
M. C.
,
Lu
,
X. L.
,
Liu
,
F.
, and
Du
,
C. X.
, “
Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation
,”
Appl. Therm. Eng.
94
,
422
(
2016
).
43.
Yao
,
Y.
,
Cheng
,
X.
,
Shi
,
L.
,
Zhang
,
S.
,
He
,
K.
, and
Peng
,
M.
, “
Experimental study on the effects of initial sealing time on fire behaviors in channel fires
,”
Int. J. Therm. Sci.
125
,
273
282
(
2018
).
44.
Zhang
,
Y.
,
Chen
,
C.
,
Lei
,
P.
,
Jiao
,
W.
,
Xu
,
T.
, and
Nie
,
Y.
, “
A study on buoyancy-driven maximum ceiling gas temperature of T-shaped bifurcated channel-like structure in fire environment
,”
Int. J. Therm. Sci.
171
,
107213
(
2022
).
45.
Zhong
,
M.
,
Shi
,
C.
,
He
,
L.
,
Shi
,
J.
,
Liu
,
C.
, and
Tian
,
X.
, “
Smoke development in full-scale sloped long and large curved tunnel fires under natural ventilation
,”
Appl. Therm. Eng.
108
,
857
865
(
2016
).
46.
Zhou
,
T. N.
,
He
,
Y. P.
,
Lin
,
X.
,
Wang
,
X. H.
, and
Wang
,
J.
, “
Influence of constraint effect of sidewall on maximum smoke temperature distribution under a tunnel ceiling
,”
Appl. Therm. Eng.
112
,
932
941
(
2017
).
You do not currently have access to this content.