The opening of transparent 0.33 l swing-top bottles, containing home-brewed ginger beer under 2–5 bars of pressure, was recorded with a high-speed camera at frame rates between 3000 fps and 16 800 fps. Simultaneously, the sound was registered with a microphone of a nominal frequency range up to 100 kHz and a sampling rate between 200 and 500 kS/s. The exhaust condensation cloud could be captured, and the main source of the popping sound, the resonating gas pocket in the bottleneck, was identified by image and sound recordings. It is shown that the sound is actually tonal rather than shock-like. Since the bottles were transparent, the interior fluid flows with sloshing and bubble nucleation were visible as well. The videos, acoustic traces, and spectra are compared to computational fluid dynamics simulations using a solver for two-phase, compressible flow from the OpenFOAM package, yielding detailed explanations on the phenomena involved. Simple resonator models can fairly reproduce the observed frequencies if adiabatic expansion cooling of the gas is taken into account.

1.
P.
Almiron
et al, “
Searching for the sound of premium beer
,”
Food Qual. Preference
88
,
104088
(
2021
).
2.
M.
Alster
, “
Improved calculation of resonant frequencies of Helmholtz resonators
,”
J. Sound Vib.
24
(
1
),
63
85
(
1972
).
3.
A.
Benidar
et al, “
Computational fluid dynamic simulation of the supersonic CO2 flow during champagne cork popping
,”
Phys. Fluids
34
(
6
),
066119
(
2022
).
4.
E.
Boujo
et al, “
Processing time-series of randomly forced self-oscillators: The example of beer bottle whistling
,”
J. Sound Vib.
464
,
114981
(
2020
).
5.
C. D.
Donaldson
and
R. S.
Snedeker
, “
A study of free jet impingement. Part 1. Mean properties of free and impinging jets
,”
J. Fluid Mech.
45
,
281
319
(
1971
).
6.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
(
Springer Science & Business Media
,
2012
).
7.
E.
Franquet
et al, “
Free underexpanded jets in a quiescent medium: A review
,”
Prog. Aerosp. Sci.
77
,
25
53
(
2015
).
8.
J. N.
Fréreux
et al, “
The dynamics of champagne cork popping revisited through high-speed schlieren imaging and computational fluid dynamics simulations
,”
Phys. Fluids
36
(
5
),
056111
(
2024
).
9.
S.
Fujikawa
and
T.
Akamatsu
, “
Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid
,”
J. Fluid Mech.
97
,
481
512
(
1980
).
10.
J.
Gros
and
S.
Collin
. “
Identification of a new light-struck off-flavour in ‘light-stable' beers
,”
Cerevisia
37
(
1
),
10
14
(
2012
).
11.
B.
Gschaider
et al,
The Foam-Extend Project
(
Sourceforge
,
2017
). https://sourceforge.net/projects/foam-extend/.
12.
H.
Jasak
, “
Error analysis and estimation for the finite volume method with applications to fluid flows
,” Ph.D. thesis (
Imperial College, University of London
,
1996
).
13.
S. Helms,
Bier und Kohlensäure Gehören Zusammen
(
Flensburger Brauerei, Emil Petersen GmbH & Co. KG
,
2024
). URL: https://www.flens.de/verstehen/detail/wofuer-brauchen-wir-kohlensaeure-und-haben-wir-genug/.
14.
M.
Koch
, “
Audio recordings
,”
Version 1
(
2024
).
15.
M.
Koch
, “
High-speed recordings post-processed
,”
Version 1
(
2024
).
16.
M.
Koch
, “
Laser cavitation bubbles at objects: Merging numerical and experimental methods
,” Ph.D. thesis (
Georg-August-Universität Göttingen, Third Physical Institute
,
2020
)..
17.
M.
Koch
et al, “
Ring vortex dynamics following jet formation of a bubble expanding and collapsing close to a flat solid boundary visualized via dye advection in the framework of OpenFOAM
,”
Fluids
8
,
200
(
2023
).
18.
L. D.
Landau
and
E. M.
Lifshitz
, “
Course of theoretical physics
,” in
Fluid Mechanics
, 2nd ed. (
Pergamon Press
,
1987
), Vol.
6
.
19.
C.
Lechner
et al, “
Jet formation from bubbles near a solid boundary in a compressible liquid: Numerical study of distance dependence
,”
Phys. Rev. Fluids
5
(
9
),
93604
(
2020
).
20.
R.
Lerch
,
G.
Sessler
, and
D.
Wolf
,
Technische Akustik: Grundlagen Und Anwendungen
(
Springer-Verlag
,
2009
).
21.
H.
Levine
and
J.
Schwinger
, “
On the radiation of sound from an unflanged circular pipe
,”
Phys. Rev.
73
(
4
),
383
(
1948
).
22.
G.
Liger-Belair
, “
The physics behind the fizz in champagne and sparkling wines
,”
Eur. Phys. J. Spec. Top.
201
,
1
88
(
2012
).
23.
G.
Liger-Belair
,
D.
Cordier
, and
R.
Georges
, “
Under-expanded supersonic CO2 freezing jets during champagne cork popping
,”
Sci. Adv.
5
(
9
),
eaav5528
(
2019
).
24.
G.
Liger-Belair
et al, “
Champagne cork popping revisited through high-speed infrared imaging: The role of temperature
,”
J. Food Eng.
116
(
1
),
78
85
(
2013
).
25.
G.
Liger-Belair
et al, “
Unveiling CO2 heterogeneous freezing plumes during champagne cork popping
,”
Sci. Rep.
7
(
1
),
10938
(
2017
).
26.
M.
Mosher
and
K.
Trantham
,
Brewing Science: A Multidisciplinary Approach
(
Springer
,
2017
).
27.
M. M.
Orescanin
and
J. M.
Austin
, “
Exhaust of underexpanded jets from finite reservoirs
,”
J. Propul. Power
26
(
4
),
744
753
(
2010
).
28.
M.
Poujol
et al, “
Sound of effervescence
,”
Phys. Rev. Fluids
6
(
1
),
013604
(
2021
).
29.
C.
Rätsch
,
Bier – Jenseits von Hopfen und Malz
, 2nd ed. (
Orbis Verlag
,
München
,
1996
). ISBN:3–572-01343–7.
30.
J.
Rodríguez-Rodríguez
,
A.
Casado-Chacón
, and
D.
Fuster
, “
Physics of beer tapping
,”
Phys. Rev. Lett.
113
(
21
),
214501
(
2014
).
31.
H.
Rudolph
,
Heimbrauen
, 6th ed.
(
Hans Carl
,
Nürnberg
,
2018
). ISBN: 978–3-418–00806-6.
32.
R.
Span
and
W.
Wagner
, “
A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
25
(
6
),
1509
1596
(
1996
).
33.
R. A.
Speers
and
A. J.
MacIntosh
, “
Carbon dioxide solubility in beer
,”
J. Am. Soc. Brew. Chem.
71
(
4
),
242
247
(
2013
).
34.
R.
Sander
, “
Henry's law constants
,” in
NIST Chemistry WebBook,
NIST Standard Reference Database No. 69, edited by
P. J.
Linstrom
and
W. G.
Mallard
(National Institute of Standards and Technology,
Gaithersburg, MD, USA
,
2024
), see https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=10#Solubility.
35.
Clawpack Development Team,
Clawpack Software
(
2024
).
37.
M.
Vollmer
and
K.-P.
Möllmann
, “
Vapour pressure and adiabatic cooling from champagne: Slow-motion visualization of gas thermodynamics
,”
Phys. Educ.
47
(
5
),
608
(
2012
).
38.
A.
Vreme
et al, “
Does shaking increase the pressure inside a bottle of champagne?
,”
J. Colloid Interface Sci.
439
, Feb
42
53
(
2015
).
39.
L.
Wagner
,
S.
Braun
, and
B.
Scheichl
, “
Simulating the opening of a champagne bottle
,”
Flow
3
,
E40
(
2023
).
40.
S.
Wolf
,
Karbonisierungs- und Spunddruckrechner
(Maische-Malz-Und-Mehr,
2024
), see https://www.maischemalzundmehr.de/index.php?inhaltmitte=toolsspeiserechner.
You do not currently have access to this content.