Compared to liquid rocket motors, solid rocket motors have lower specific impulse and weaker thrust regulation capabilities. Therefore, the concept of helium-injected solid–gas hybrid rocket motor (SGHRM), which can effectively improve specific impulse and achieve thrust regulation function, was introduced by our research group. The injected helium is used as working medium with strong expansion capacity, and the high-temperature combustion gas is used as a heat source to heat the helium. A mixture of gases, including combustion gas and helium, then flows through the nozzle producing high thrust. In the present paper, swirling helium is injected into the combustion chamber to further improve the specific impulse of SGHRM. The effects of helium mass flow and swirl intensity are numerically investigated, and the mechanism of specific impulse gain is revealed by one-dimensional gas dynamics analysis. Results indicate a maximum specific impulse gain of 11.28% and a thrust adjustment range of 100%–225% by varying the helium injection ratio. Compared with the axial helium injection scheme, the swirling helium injection scheme effectively improves the mixing degree of helium and combustion gas, and the behavior of rotating helium passing through combustion gas enhances the thermal convection. These two actions together strengthen the heat transfer from combustion gas to helium, effectively improve the total temperature and working capacity of helium, and further increase the exit velocity of mixed gas. In addition, the centrifugal force caused by the swirl elevates the mass flux in the velocity increase zone near the wall and further enhances the specific impulse.

1.
Z. B.
Ma
and
L. S.
He
, “
Development trend review of foreign heavy-lift launch vehicle
,”
J. Solid Rocket Technol.
35
(
1
),
1
4
(
2012
).
2.
P.
Nowakowski
,
A.
Okninski
,
M.
Pakosz
,
D.
Cieslinski
,
B.
Bartkowiak
, and
P.
Wolanski
, “
Development of small solid rocket boosters for the ILR-33 sounding rocket
,”
Acta Astronaut.
138
,
374
383
(
2017
).
3.
D.
Lempert
,
G.
Nechiporenko
, and
G.
Manelis
, “
Energetic performances of solid composite propellants
,”
Cent. Eur. J. Energy Mater.
8
(
1
),
25
38
(
2011
).
4.
A.
Davenas
, “
Development of modern solid propellants
,”
J. Propul. Power
19
(
6
),
1108
1128
(
2003
).
5.
J.
Hunley
, “
The history of solid-propellant rocketry-What we do and do not know
,” in
35th AIAA/ASME/SAE/AS Joint Propulsion Conference and Exhibit
(
AIAA
,
California
,
1999
).
6.
C.
Huggett
,
C. E.
Bartley
, and
M. M.
Mills
,
Solid Propellant Rockets
(
Princeton University Press
,
2015
).
7.
R. H.
Frisbee
, “
Advanced space propulsion for the 21st century
,”
J. Propul. Power
19
(
6
),
1129
1154
(
2003
).
8.
R. A.
Gabrielli
and
G.
Herdrich
, “
Review of nuclear thermal propulsion systems
,”
Prog. Aeronaut. Sci.
79
,
92
113
(
2015
).
9.
C.
Li
,
G.
Wang
,
H.
Wang
,
B.
Guan
,
H.
Yang
, and
Z.
Yang
, “
Numerical investigation on thrust gain mechanism of helium injected solid-gas hybrid rocket motor
,”
Phys. Fluids
36
(
9
),
096121
(
2024
).
10.
A. K.
Gupta
,
D. G.
Lilley
, and
N.
Syred
,
Swirl Flows
(
Abacus Press
,
Cambridge, MA
,
1984
).
11.
R. H.
Chen
and
J. F.
Driscoll
, “
The role of the recirculation vortex in improving fuel-air mixing within swirling flames
,”
Symp. (Int.) Combust.
22
(
1
),
531
540
(
1989
).
12.
F.
Chang
and
V. K.
Dhir
, “
Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection
,”
Int. J. Heat Fluid Flow
16
(
2
),
78
87
(
1995
).
13.
R.
Orlü
and
P. H.
Alfredsson
, “
An experimental study of the near-field mixing characteristics of a swirling jet
,”
Flow. Turbul. Combust.
80
,
323
350
(
2008
).
14.
S. R.
Gomes
,
L.
Rocco
, and
J. A. F. F.
Rocco
, “
Swirl injection effects on hybrid rocket motors
,”
J. Aerosp. Technol. Manage.
7
,
418
424
(
2015
).
15.
O.
Musa
,
C.
Xiong
,
S. Z.
Chang
, and
L. K.
Ying
, “
Investigations on the influence of swirl intensity on solid-fuel ramjet engine
,”
Comput. Fluids
167
,
82
99
(
2018
).
16.
M.
Mohan
,
V. K.
Sharma
,
E. A.
Kumar
, et al, “
Hydrogen storage in carbon materials—A review
,”
Energy Storage
1
(
2
),
e35
(
2019
).
17.
X.
Zhao
,
Y.
Yan
,
J.
Zhang
,
F.
Zhang
,
Z.
Wang
, and
Z.
Ni
, “
Analysis of multilayered carbon fiber winding of cryo-compressed hydrogen storage vessel
,”
Int. J. Hydrogen Energy
47
(
20
),
10934
10946
(
2022
).
18.
M.
Nachtane
,
M.
Tarfaoui
,
M. A.
Abichou
,
A.
Vetcher
,
M.
Rouway
,
A.
Aâmir
, and
H.
Naanani
, “
An overview of the recent advances in composite materials and artificial intelligence for hydrogen storage vessels design
,”
J. Compos. Sci.
7
(
3
),
119
(
2023
).
19.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
20.
S. V.
Patankar
and
D. B.
Spalding
, “
A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
,”
Int. J. Heat Mass Transfer
15
(
10
),
1787
1806
(
1972
).
21.
A. J.
Chorin
, “
Numerical solution of the Navier–Stokes equations
,”
Math. Comp.
22
(
104
),
745
762
(
1968
).
22.
G.
Boyer
,
G.
Casalis
, and
J. L.
Estivalèzes
, “
Stability analysis and numerical simulation of simplified solid rocket motors
,”
Phys. Fluids
25
(
8
),
084109
(
2013
).
23.
B. J.
Mcbride
,
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications
(
NASA
,
1996
).
24.
E. W.
Lemmon
,
I. H.
Bell
,
M. L.
Huber
, and
M. O.
McLinden
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology
, Standard Reference Data Program (
NIST
,
2018
).
25.
N.
Bai
,
W.
Fan
, and
R.
Zhang
, “
A mixing enhancement mechanism for a hydrogen transverse jet coupled with a shear layer for gas turbine combustion
,”
Phys. Fluids
35
(
4
),
045111
(
2023
).
26.
J. C.
Traineaub
,
P.
Hervat
, and
P.
Kuentzmann
, “
Cold-flow simulation of a two-dimensional nozzle less solid rocket motor
,” in
AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conference
(
AIAA
,
Huntsville, Alabama
,
1986
).
27.
L.
Gevorkyan
,
T.
Shoji
,
D. R.
Getsinger
,
O. I.
Smith
, and
A. R.
Karagozian
, “
Transverse jet mixing characteristics
,”
J. Fluid Mech.
790
,
237
274
(
2016
).
28.
C. P.
Caulfield
, “
Layering, instabilities, and mixing in turbulent stratified flows
,”
Annu. Rev. Fluid Mech.
53
(
1
),
113
145
(
2021
).
29.
A.
Masson
and
K.
Nykyri
, “
Kelvin-Helmholtz instability: Lessons learned and ways forward
,”
Space Sci. Rev.
214
(
4
),
71
(
2018
).
30.
A. S.
Lobasov
,
S. V.
Alekseenko
,
D. M.
Markovich
, and
V. M.
Dulin
, “
Mass and momentum transport in the near field of swirling turbulent jets. Effect of swirl rate
,”
Int. J. Heat Fluid Flow
83
,
108539
(
2020
).
31.
M.
Sheikholeslami
,
M.
Gorji-Bandpy
, and
D. D.
Ganji
, “
Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices
,”
Renewable Sustainable Energy Rev.
49
,
444
469
(
2015
).
32.
Z. U.
Ahmed
,
Y. M.
Al-Abdeli
, and
F. G.
Guzzomi
, “
Heat transfer characteristics of swirling and non-swirling impinging turbulent jets
,”.
Int. J. Heat Mass Transfer
102
,
991
1003
(
2016
).
33.
F.
Seibold
,
P.
Ligrani
, and
B.
Weigand
, “
Flow and heat transfer in swirl tubes-A review
,”
Int. J. Heat Mass Transfer
187
,
122455
(
2022
).
You do not currently have access to this content.