Effective control of frictional drag on a model surface is crucial for achieving total drag reduction at high Reynolds number conditions. This study presents wind tunnel tests at high Reynolds numbers, employing two sets of flat plate models with identical external dimensions. The tests cover incoming Mach numbers ranging from 0.3 to 0.85, corresponding to Reynolds numbers from 2.52 × 106 to 6.35 × 106. The velocity distributions and statistical properties within the turbulent boundary layer were measured using a combination of hot-wire probes and total pressure probes. Total model drag was assessed using a high-precision balance. The results demonstrate that the application of porous media significantly reduces frictional drag, with the cavity arrangement yielding superior drag reduction compared to the non-cavity arrangement. As the Reynolds number increases, the effectiveness of friction drag control diminishes. Moreover, the arrangement of porous media with appropriately chosen parameters can effectively reduce the total drag of the model. Flow field analysis reveals that porous media alter the vortex structure distribution within the boundary layer, increasing small-scale vortex structures and mitigating the impact of large-scale streamwise vortices on the wall, thereby reducing frictional drag. These findings provide important technical support and experimental evidence for the application of porous media in drag reduction at high Reynolds number conditions.

1.
P. Q.
Liu
,
W.
Zhang
, and
H.
Guo
, “
Drag reduction technique for large transport aircraft
,”
Mech. Eng.
40
,
129
139
(
2018
).
2.
D. M.
Bushenll
, “
Aircraft drag reduction—a review
,”
Proc. Inst. Mech. Eng., Part G
217
,
1
18
(
2003
).
3.
S. J.
Kline
,
W. C.
Reynolds
,
F. A.
Schraub
, and
P. W.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
773
(
1967
).
4.
A.
Rouhi
,
M. K.
Fu
,
D.
Chandran
,
A.
Zampiron
,
A. J.
Smits
, and
I.
Marusic
, “
Active turbulence control for drag reduction in wall-bounded flows
,”
J. Fluid Mech.
262
,
75
110
(
1994
).
5.
B. Q.
Deng
, “
Research on the mechanism of wall turbulence drag reduction control based on coherent structure
,” Ph.D. thesis (
Tsinghua University
,
2014
).
6.
D.
Chandran
,
A.
Zampiron
,
A.
Rouhi
,
M. K.
Fu
,
D.
Wine
,
B.
Holloway
,
A. J.
Smts
, and
I.
Marusic
, “
Turbulent drag reduction by spanwise wall forcing. Part 2. High-Reynolds-number experiments
,”
J. Fluid Mech.
968
,
A7
(
2023
).
7.
K.
Kim
and
H. J.
Sung
, “
Effects of periodic blowing from spanwise slot on a turbulent boundary layer
,”
AIAA J.
41
,
1916
1924
(
2003
).
8.
R. A.
Antonia
,
Y.
Zhu
, and
M.
Sokolov
, “
Effect of concentrated wall suction on a turbulent boundary layer
,”
Phys. Fluids
7
,
2465
2474
(
1995
).
9.
Z. X.
Ye
,
Y. Y.
Jiang
,
Y.
Zhang
,
J. F.
Zhou
, and
Z.
Yao
, “
Effects of synthetic jet array on turbulent boundary layer
,”
Int. J. Heat Technol.
37
,
893
898
(
2019
).
10.
L. S.
Lu
,
D.
Li
,
J.
Zheng
,
Y.
Bai
, and
Z.
Cao
, “
An experimental study on turbulent boundary layer flow control by synthetic jet through spanwise slot
,”
Adv. Aeronaut. Sci. Eng.
11
,
618
628
(
2020
).
11.
B.
Wu
,
C.
Gao
,
F.
Liu
,
M.
Xue
,
Y. S.
Wang
, and
B. R.
Zheng
, “
Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula
,”
Plasma Sci. Technol.
21
,
045501
(
2019
).
12.
T. C.
Corke
,
C. L.
Enloe
, and
S. P.
Wilkinson
, “
Dielectric barrier discharge plasma actuators for flow control
,”
Annu. Rev. Fluid Mech.
42
,
505
529
(
2010
).
13.
J.
Yao
,
X.
Chen
, and
F.
Hussain
, “
Composite active drag control in turbulent channel flows
,”
Phys. Rev. Fluids
6
,
054605
(
2021
).
14.
K.
Duraisamy
,
P. R.
Spalart
, and
C. L.
Rumsey
,
Status, Emerging Ideas and Future Directions of Turbulence Modeling Research in Aeronautics
(
NASA Langley Research Center
,
2017
).
15.
W. F.
Reif
, “
Morphogenesis and Function of the Squamation in Sharks
,”
Neues Jahrb. Geol. Paläontologie-Abh. Band
164
,
172
183
(
1982
).
16.
W. Q.
Gong
,
X. H.
Li
, and
S. J.
Huang
, “
Experiment study on the mechanism of riblets drag reduction
,”
J. Eng. Thermophys.
23
,
579
582
(
2002
).
17.
J.
Hu
and
Z. H.
Yao
, “
Drag reduction of turbulent boundary layer over sawtooth riblet surface with superhydrophobic coat
,”
Phys. Fluids
35
,
015104
(
2023
).
18.
A.
Rastegari
and
R.
Akhavan
, “
The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets
,”
J. Fluid Mech.
838
,
68
104
(
2018
).
19.
D. W.
Bechert
,
M.
Bruse
,
W.
Hage
,
J. G. T. V. D.
Hoeven
, and
G.
Hoppe
, “
Experiments on drag-reducing surfaces and their optimization with an adjustable geometry
,”
J. Fluid Mech.
338
,
59
87
(
1997
).
20.
P.
Ricco
,
M.
Skote
, and
M. A.
Leschziner
, “
A review of turbulent skin-friction drag reduction by near-wall transverse forcing
,”
Prog. Aerosp. Sci.
123
,
100713
(
2021
).
21.
D.
Modesti
,
S.
Endrikat
,
N.
Hutchins
, and
D.
Chung
, “
Dispersive stresses in turbulent flow over riblets
,”
J. Fluid Mech.
917
,
A55
(
2021
).
22.
S.
Hahn
,
J.
Je
, and
H.
Chol
, “
Direct numerical simulation of turbulent channel flow with permeable walls
,”
J. Fluid Mech.
450
,
259
285
(
2002
).
23.
M. E.
Rosti
,
L.
Brandt
, and
A.
Pinelli
, “
Turbulent channel flow over an anisotropic porous wall–drag increase and reduction
,”
J. Fluid Mech.
842
,
381
394
(
2018
).
24.
K.
Klausmann
and
B.
Ruck
, “
Drag reduction of circular cylinders by porous coating on the leeward side
,”
J. Fluid Mech.
813
,
382
411
(
2017
).
25.
H.
Du
,
Q. L.
Zhang
,
Q. X.
Li
,
W. J.
Kong
, and
L. J.
Yang
, “
Drag reduction in cylindrical wake flow using porous material
,”
Phys. Fluids
34
,
045102
(
2022
).
26.
H.
Du
,
Q. X.
Li
,
Q. L.
Zhang
,
W. X.
Zhang
, and
L. J.
Yang
, “
Experimental study on drag reduction of the turbulent boundary layer via porous media under nonzero pressure gradient
,”
Phys. Fluids
34
,
025110
(
2022
).
27.
G.
Gómez-de-Segura
and
R.
García-Mayoral
, “
Turbulent drag reduction by anisotropic permeable substrates–analysis and direct numerical simulations
,”
J. Fluid Mech.
875
,
124
172
(
2019
).
28.
A.
Rastegari
and
R.
Akhavan
, “
On drag reduction scaling and sustainability bounds of superhydrophobic surfaces in high Reynolds number turbulent flows
,”
J. Fluid Mech.
864
,
327
347
(
2019
).
29.
B. H.
Schlichting
and
T.
Kestin
,
Boundary-Layer Theory
(
McGraw-Hill
,
1990
).
30.
C. C.
Shi
, “
An explicit expression of the turbulent frictional drag coefficient for a flat plate
,”
Acta Aeronaut. Astronaut. Sin.
9
,
299
302
(
1988
).
31.
V. I.
Kornilov
and
A. V.
Boiko
, “
Efficiency of air microblowing through microperforated wall for flat plate drag reduction
,”
AIAA J.
50
,
724
732
(
2012
).
32.
C. X.
XU
, “
Coherent structures and drag-reduction mechanism in wall turbulence
,”
Adv. Mech.
45
,
111
140
(
2015
).
33.
M.
Guala
,
S. E.
Hommema
, and
R. J.
Adrian
, “
Large-scale and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
554
,
521
542
(
2006
).
You do not currently have access to this content.