Accuracy limitations in solving the compressible Navier–Stokes equations at low speed/Mach numbers have drawn research interest for many decades. Despite numerous attempts to overcome these limitations, a comprehensive solution remains elusive, particularly regarding turbulent flows. This study introduces an innovative numerical approach called the Numerical Enhancement for Hyposonic Accuracy, aimed at effectively addressing the challenges of solving the compressible Navier–Stokes equations in turbulent boundary layer flows within the hyposonic limit. The new method locally adjusts the reconstructed flow velocity, significantly reducing the dissipation of low Mach number features while imposing minimal additional computational cost and enabling straightforward implementation. The effectiveness of the proposed method is validated through implicit large eddy simulations of weakly compressible turbulent channel flow. This validation includes detailed evaluations of the friction Reynolds number, streamwise velocity profiles, and higher-order turbulence statistics. The analysis conclusively demonstrates that the proposed method significantly reduces numerical dissipation in subsonic turbulent boundary layers while preventing the emergence of any artificial noise in numerical simulations at the hyposonic limit.

1.
F.
Coulouvrat
, “
On the equations of non linear acoustics
,”
J. d'acoustique (Les Ulis)
5
(
4
),
321
359
(
1992
).
2.
B.
Müller
, “
Low-Mach-number asymptotic Navier–Stokes equations
,”
J. Eng. Mathematics
34
,
97
109
(
1998
).
3.
R. K.
Zeytounian
,
Topics in hyposonic flow theory
, in Lecture Notes in Physics, Vol.
672
(
Springer Berlin Heidelberg
,
2006
).
4.
M.
Fujii
, “
Low Mach number limit of the global solution to the compressible Navier–Stokes system for large data in the critical Besov space
,”
Math. Ann.
388
,
4083
4134
(
2024
).
5.
N.
Deguchi
, “
On the stability of stationary compressible Navier–Stokes flows in 3D
,”
Math. Ann.
390
,
4361
4404
(
2024
).
6.
J. M.
Weiss
and
W. A.
Smith
, “
Preconditioning applied to variable and constant density flows
,”
AIAA J.
33
,
2050
2057
(
1995
).
7.
J. R.
Edwards
and
M.-S.
Liou
, “
Low-diffusion flux-splitting methods for flows at all speeds
,”
AIAA J.
36
,
1610
1617
(
1998
).
8.
E.
Turkel
, “
Preconditioning techniques in computational fluid dynamics
,”
Annu. Rev. Fluid Mech.
31
,
385
416
(
1999
).
9.
I.
Mary
,
P.
Sagaut
, and
M.
Deville
, “
An algorithm for unsteady viscous flows at all speeds
,”
Int. J. Numer. Methods Fluids
34
,
371
401
(
2000
).
10.
H.
Guillard
and
C.
Viozat
, “
On the behaviour of upwind schemes in the low Mach number limit
,”
Comput. Fluids
28
,
63
86
(
1999
).
11.
D.
Drikakis
and
W.
Rider
,
High-Resolution Methods for Incompressible and Low-Speed Flows
(
Springer Berlin Heidelberg
,
2005
).
12.
P.
Birken
and
A.
Meister
, “
Stability of preconditioned finite volume schemes at low Mach numbers
,”
Bit Numer. Math.
45
,
463
480
(
2005
).
13.
S.-H.
Lee
, “
Cancellation problem of preconditioning method at low Mach numbers
,”
J. Comput. Phys.
225
,
1199
1210
(
2007
).
14.
X.
Li
,
J.
Xu
, and
C.
Gu
, “
Preconditioning method and engineering application of large eddy simulation
,”
Sci. China Ser. G-Phys. Mech. Astron.
51
,
667
677
(
2008
).
15.
X. s
Li
and
C. w
Gu
, “
An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour
,”
J. Comput. Phys.
227
,
5144
5159
(
2008
).
16.
F.
Rieper
, “
A low-Mach number fix for Roe's approximate Riemann solver
,”
J. Comput. Phys.
230
,
5263
5287
(
2011
).
17.
H.
Guillard
and
B.
Nkonga
, “
Chapter 8—On the behaviour of upwind schemes in the low Mach number limit: A review
,” in
Handbook of Numerical Methods for Hyperbolic Problems
, Handbook of Numerical Analysis, Vol.
18
, edited by
R.
Abgrall
and
C.-W.
Shu
(
Elsevier
,
2017
), pp.
203
231
.
18.
H.
Guillard
and
A.
Murrone
, “
On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes
,”
Comput. Fluids
33
,
655
675
(
2004
).
19.
S. K.
Godunov
and
I.
Bohachevsky
, “
Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics
,”
Matematičeskij sbornik
47
(
89
),
271
306
(
1959
).
20.
B.
Thornber
,
A.
Mosedale
,
D.
Drikakis
,
D.
Youngs
, and
R.
Williams
, “
An improved reconstruction method for compressible flows with low Mach number features
,”
J. Comput. Phys.
227
,
4873
4894
(
2008
).
21.
I.
Kokkinakis
and
D.
Drikakis
, “
Implicit large eddy simulation of weakly-compressible turbulent channel flow
,”
Comput. Methods Appl. Mech. Eng.
287
,
229
261
(
2015
).
22.
P.
Tsoutsanis
,
I. W.
Kokkinakis
,
L.
Könözsy
,
D.
Drikakis
,
R. J.
Williams
, and
D. L.
Youngs
, “
Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem
,”
Comput. Methods Appl. Mech. Eng.
293
,
207
231
(
2015
).
23.
G.-S.
Jiang
and
C.-W.
Shu
, “
Efficient implementation of weighted ENO schemes
,”
J. Comput. Phys.
126
,
202
228
(
1996
).
24.
D. S.
Balsara
and
C.-W.
Shu
, “
Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
,”
J. Comput. Phys.
160
,
405
452
(
2000
).
25.
I.
Kokkinakis
,
D.
Drikakis
,
K.
Ritos
, and
S. M.
Spottswood
, “
Direct numerical simulation of supersonic flow and acoustics over a compression ramp
,”
Phys. Fluids
32
,
066107
(
2020
).
26.
K.
Ritos
,
I. W.
Kokkinakis
, and
D.
Drikakis
, “
Physical insight into the accuracy of finely-resolved iLES in turbulent boundary layers
,”
Comput. Fluids
169
,
309
316
(
2018
).
27.
K.
Ritos
,
I. W.
Kokkinakis
, and
D.
Drikakis
, “
Performance of high-order implicit large eddy simulations
,”
Comput. Fluids
173
,
307
312
(
2018
).
28.
N.
Simmonds
,
P.
Tsoutsanis
,
A. F.
Antoniadis
,
K. W.
Jenkins
, and
A.
Gaylard
, “
Low-Mach number treatment for finite-volume schemes on unstructured meshes
,”
Appl. Math. Comput.
336
,
368
393
(
2018
).
29.
K.
Oßwald
,
A.
Siegmund
,
P.
Birken
,
V.
Hannemann
, and
A.
Meister
, “
L2Roe: A low dissipation version of Roe's approximate Riemann solver for low Mach numbers
,”
Int. J. Numer. Methods Fluids
81
,
71
86
(
2016
).
30.
A.
Kravchenko
and
P.
Moin
, “
On the effect of numerical errors in large eddy simulations of turbulent flows
,”
J. Comput. Phys.
131
,
310
322
(
1997
).
31.
B.
Geurts
,
Elements of Direct and Large-Eddy Simulation
(
R.T. Edwards, Inc
,
Flourtown, PA
,
2003
), p.
388
.
32.
S. T.
Bose
,
P.
Moin
, and
D.
You
, “
Grid-independent large-eddy simulation using explicit filtering
,”
Phys. Fluids
22
,
105103
(
2010
).
33.
D.
Drikakis
and
S.
Tsangaris
, “
On the solution of the compressible Navier–Stokes equations using improved flux vector splitting methods
,”
Appl. Math. Modell.
17
,
282
297
(
1993
).
34.
D.
Drikakis
, “
Embedded turbulence model in numerical methods for hyperbolic conservation laws
,”
Int. J. Numer. Methods Fluids
39
,
763
781
(
2002
).
35.
D.
Drikakis
, “
Advances in turbulent flow computations using high-resolution methods
,”
Prog. Aerosp. Sci.
39
,
405
424
(
2003
).
36.
S.
Lionel
, “
WG5 Fortran—Fortran 2018 (Formerly Fortran 2015)—wg5-fortran.org
,” https://wg5-fortran.org/f2018.html (accessed February 2, 2025).
37.
D.
Drikakis
,
M.
Hahn
,
A.
Mosedale
, and
B.
Thornber
, “
Large eddy simulation using high-resolution and high-order methods
,”
Philos. Trans. R. Soc. A
367
,
2985
2997
(
2009
).
38.
K.
Ritos
,
I. W.
Kokkinakis
,
D.
Drikakis
, and
S. M.
Spottswood
, “
Implicit large eddy simulation of acoustic loading in supersonic turbulent boundary layers
,”
Phys. Fluids
29
,
046101
(
2017
).
39.
K.
Ritos
,
I.
Kokkinakis
, and
D.
Drikakis
, “
Physical insight into a Mach 7.2 compression corner flow
,” in
2018 AIAA Aerospace Sciences Meeting
(
AIAA
,
2018
).
40.
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
,
Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
(
Cambridge University Press
,
2007
), p.
578
.
41.
D.
Drikakis
and
B. J.
Geurts
,
Turbulent Flow Computation
, Vol.
66
(
Springer Netherlands
,
2002
), p.
376
.
42.
B.
van Leer
, “
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method
,”
J. Comput. Phys.
32
,
101
136
(
1979
).
43.
R.
Spiteri
and
S.
Ruuth
, “
A new class of optimal high-order strong-stability-preserving time discretization methods
,”
SIAM J. Numer. Anal.
40
,
469
491
(
2002
).
44.
C. W.
Shu
, “
Numerical experiments on the accuracy of ENO and modified ENO schemes
,”
J. Sci. Comput.
5
,
127
149
(
1990
).
45.
X.-D.
Liu
,
S.
Osher
, and
T.
Chan
, “
Weighted essentially non-oscillatory schemes
,”
J. Comput. Phys.
115
,
200
212
(
1994
).
46.
C.-W.
Shu
, “
Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws
,” in
Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lectures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held in Cetraro
, Italy, June 23–28, 1997, edited by
A.
Quarteroni
(
Springer Berlin Heidelberg
,
1998
), pp.
325
432
.
47.
C.
Shu
, “
High order weighted essentially nonoscillatory schemes for convection dominated problems
,”
SIAM Rev.
51
,
82
126
(
2009
).
48.
O.
Zanotti
and
M.
Dumbser
, “
Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables
,”
Comput. Astrophys.
3
(
1
),
32
(
2016
).
49.
R. H.
Nichols
,
R. W.
Tramel
, and
P. G.
Buning
, “
Evaluation of two high-order weighted essentially nonoscillatory schemes
,”
AIAA J.
46
,
3090
3102
(
2008
).
50.
E. M.
Taylor
,
M.
Wu
, and
M. P.
Martín
, “
Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence
,”
J. Comput. Phys.
223
,
384
397
(
2007
).
51.
M.
Wu
and
M. P.
Martín
, “
Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp
,”
AIAA J.
45
,
879
889
(
2007
).
52.
A. K.
Henrick
,
T. D.
Aslam
, and
J. M.
Powers
, “
Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points
,”
J. Comput. Phys.
207
,
542
567
(
2005
).
53.
H.
Feng
,
C.
Huang
, and
R.
Wang
, “
An improved mapped weighted essentially non-oscillatory scheme
,”
Appl. Math. Comput.
232
,
453
468
(
2014
).
54.
A.
Harten
,
B.
Engquist
,
S.
Osher
, and
S. R.
Chakravarthy
, “
Uniformly high order accurate essentially non-oscillatory schemes, III
,”
J. Comput. Phys.
131
,
3
47
(
1997
).
55.
V.
Titarev
and
E.
Toro
, “
Finite-volume WENO schemes for three-dimensional conservation laws
,”
J. Comput. Phys.
201
,
238
260
(
2004
).
56.
E. F.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock Waves
4
,
25
34
(
1994
).
57.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction
, 3rd ed. (
Springer-Verlag Berlin Heidelberg
,
2009
).
58.
E. F.
Toro
, “
A linearized Riemann solver for the time-dependent Euler equations of gas dynamics
,”
Proc. R. Soc. London Ser. A: Math. Phys. Sci.
434
,
683
693
(
1991
).
59.
E. F.
Toro
, “
Direct Riemann solvers for the time-dependent Euler equations
,”
Shock Waves
5
,
75
(
1995
).
60.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to R eτ = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
61.
L.
Duan
,
I.
Beekman
, and
M. P.
Martín
, “
Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature
,”
J. Fluid Mech.
655
,
419
445
(
2010
).
62.
G. N.
Coleman
,
J.
Kim
, and
R. D.
Moser
, “
A numerical study of turbulent supersonic isothermal-wall channel flow
,”
J. Fluid Mech.
305
,
159
183
(
1995
).
63.
Y.
Morinishi
,
S.
Tamano
, and
K.
Nakabayashi
, “
Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls
,”
J. Fluid Mech.
502
,
273
308
(
2004
).
64.
M.
Terracol
,
P.
Sagaut
, and
C.
Basdevant
, “
A multilevel algorithm for large-eddy simulation of turbulent compressible flows
,”
J. Comput. Phys.
167
,
439
474
(
2001
).
65.
E.
Lenormand
,
P.
Sagaut
, and
L.
Ta Phuoc
, “
Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number
,”
Int. J. Numer. Methods Fluids
32
,
369
406
(
2000
).
66.
E.
Lenormand
,
P.
Sagaut
,
L. T.
Phuoc
, and
P.
Comte
, “
Subgrid-scale models for large-eddy simulations of compressible wall bounded flows
,”
AIAA J.
38
,
1340
1350
(
2000
).
67.
P. G.
Huang
,
G. N.
Coleman
, and
P.
Bradshaw
, “
Compressible turbulent channel flows: DNS results and modelling
,”
J. Fluid Mech.
305
,
185
218
(
1995
).
68.
V.
Deschamps
, “
Simulation numérique de la turbulence inhomogène incompressible dans un écoulement de canal plan
,” Ph.D. thesis (
INPT
,
1988
).
69.
D.
Taieb
and
G.
Ribert
, “
Direct numerical simulation and large-eddy simulation of supersonic channel flow
,”
J. Propul. Power
29
,
1064
1075
(
2013
).
70.
C.
Brun
,
M.
Petrovan Boiarciuc
,
M.
Haberkorn
, and
P.
Comte
, “
Large eddy simulation of compressible channel flow
,”
Theor. Comput. Fluid Dyn.
22
,
189
212
(
2008
).
You do not currently have access to this content.