Laminar-to-turbulent transition in hypersonic boundary layer on a straight cone is numerically investigated in this study. High-fidelity simulation is performed with direct-numerical simulation (DNS) coupled with the linear stability theory (LST). This study focuses on the transition scenario of fundamental breakdown, driven by the two-dimensional Mack 2nd mode and a pair of oblique modes. The major instabilities in the hypersonic boundary layer are identified by LST and introduced at the DNS inlet. Current DNS computations successfully capture intrinsic transition phenomena, including aligned vortical structures and peak heat flux in the transition process, and complete transition to turbulent flow. Appropriate numerical dissipation associated with shock-capturing methods is investigated in this study because of the presence of a nose shock outside the boundary layer and compression waves from amplified instabilities inside the boundary layer. This numerical study is conducted with two shock sensors. A classical shock sensor generates excessive dissipation in the viscous boundary layer, which artificially delays the turbulent transition. The alternative sensor reduces the unintended dissipation, allowing flow to develop turbulence within the computational domain. Computational data are discussed with relevant experimental and theoretical data.

1.
J.
Lim
,
M.
Kim
,
H.
Bae
,
R.-S.
Lin
, and
S.
Jee
, “
Turbulent transition control using porous surfaces in hypersonic boundary layer
,”
Int. J. Aeronaut. Space Sci.
24
,
972
984
(
2023
).
2.
J.
Lim
,
M.
Jeong
,
M.
Kim
, and
S.
Jee
, “
Eddy-resolving simulation coupled with stability analysis for turbulent transition in compressible boundary layer
,”
Flow, Turbul. Combust.
2024
,
1
26
.
3.
H.
Bae
,
J.
Lim
,
M.
Kim
, and
S.
Jee
, “
Direct-numerical simulation with the stability theory for turbulent transition in hypersonic boundary layer
,”
Int. J. Aeronaut. Space Sci.
24
,
1004
1014
(
2023
).
4.
J.
Slotnick
,
A.
Khodadoust
,
J.
Alonso
,
D.
Darmofal
,
W.
Gropp
,
E.
Lurie
, and
D.
Mavriplis
, “
CFD vision 2030 study: A path to revolutionary computational aerosciences
,”
Technical Report NASA/CR-2014-218178
(
National Aeronautics and Space Administration
,
2014
).
5.
H.
Fasel
, “
Investigation of the stability of boundary layers by a finite-difference model of the Navier–Stokes equations
,”
J. Fluid Mech.
78
,
355
383
(
1976
).
6.
R. D.
Joslin
,
C. L.
Streett
, and
C.-L.
Chang
, “
Spatial direct numerical simulation of boundary-layer transition mechanisms: Validation of PSE theory
,”
Theor. Comput. Fluid Dyn.
4
,
271
288
(
1993
).
7.
S.
Jee
,
J.
Joo
, and
R.-S.
Lin
, “
Toward cost-effective boundary layer transition computations with large-eddy simulation
,”
J. Fluids Eng.
140
,
111201
(
2018
).
8.
A.
Lozano-Durán
,
M. J. P.
Hack
, and
P.
Moin
, “
Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations
,”
Phys. Rev. Fluids
3
,
023901
(
2018
).
9.
M.
Kim
,
J.
Lim
,
S.
Kim
,
S.
Jee
,
J.
Park
, and
D.
Park
, “
Large-eddy simulation with parabolized stability equations for turbulent transition using OpenFOAM
,”
Comput. Fluids
189
,
108
117
(
2019
).
10.
M.
Kim
,
J.
Lim
,
S.
Kim
,
S.
Jee
, and
D.
Park
, “
Assessment of the wall-adapting local eddy-viscosity model in transitional boundary layer
,”
Comput. Methods Appl. Mech. Eng.
371
,
113287
(
2020
).
11.
M.
Kim
,
S.
Kim
,
J.
Lim
,
R.-S.
Lin
,
S.
Jee
, and
D.
Park
, “
Effects of phase difference between instability modes on boundary-layer transition
,”
J. Fluid Mech.
927
,
A14
(
2021
).
12.
J.
Lim
,
M.
Kim
,
S.
Kim
,
S.
Jee
, and
D.
Park
, “
Cost-effective and high-fidelity method for turbulent transition in compressible boundary layer
,”
Aerosp. Sci. Technol.
108
,
106367
(
2021
).
13.
C. D.
Pruett
and
C.-L.
Chang
, “
Direct numerical simulation of hypersonic boundary-layer flow on a flared cone
,”
Theor. Comput. Fluid Dyn.
11
,
49
67
(
1998
).
14.
Y.
Zhu
,
C.
Lee
,
X.
Chen
,
J.
Wu
,
S.
Chen
, and
M.
Gad-el-Hak
, “
Newly identified principle for aerodynamic heating in hypersonic flows
,”
J. Fluid Mech.
855
,
152
180
(
2018
).
15.
J.
Sivasubramanian
and
H. F.
Fasel
, “
Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: Fundamental breakdown
,”
J. Fluid Mech.
768
,
175
218
(
2015
).
16.
C.
Hader
and
H. F.
Fasel
, “
Direct numerical simulations of hypersonic boundary-layer transition for a flared cone: Fundamental breakdown
,”
J. Fluid Mech.
869
,
341
384
(
2019
).
17.
C.
Hader
and
H. F.
Fasel
, “
Numerical investigation of the laminar-turbulent boundary-layer transition for a circular cone at Mach 5: Wind tunnel and flight conditions
,” in
AIAA Scitech 2023 Forum
(
AIAA
,
2023
), p.
0287
.
18.
D. J.
Lusher
and
N.
Sandham
, “
Assessment of low-dissipative shock-capturing schemes for transitional and turbulent shock interactions
,” in
AIAA Aviation 2019 Forum
(
AIAA
,
2019
), p.
3208
.
19.
S.
Pirozzoli
, “
Numerical methods for high-speed flows
,”
Annu. Rev. Fluid Mech.
43
,
163
194
(
2011
).
20.
G.
Moretti
, “
Computation of flows with shocks
,”
Annu. Rev. Fluid Mech.
19
,
313
337
(
1987
).
21.
H. C.
Yee
, “
A class of high resolution explicit and implicit shock-capturing methods
,”
Technical Report NASA-TM-101088
(
National Aeronautics and Space Administration
,
1989
).
22.
A.
Harten
, “
The artificial compression method for computation of shocks and contact discontinuities: III. Self-adjusting hybrid schemes
,”
Math. Comput.
32
,
363
389
(
1978
).
23.
X.-D.
Liu
,
S.
Osher
, and
T.
Chan
, “
Weighted essentially non-oscillatory schemes
,”
J. Comput. Phys.
115
,
200
212
(
1994
).
24.
G.-S.
Jiang
and
C.-W.
Shu
, “
Efficient implementation of weighted ENO schemes
,”
J. Comput. Phys.
126
,
202
228
(
1996
).
25.
C.-W.
Shu
, “
High order weighted essentially nonoscillatory schemes for convection dominated problems
,”
SIAM Rev.
51
,
82
126
(
2009
).
26.
K.
Casper
,
S.
Beresh
,
J.
Henfling
,
R.
Spillers
,
B.
Pruett
, and
S.
Schneider
, “
Hypersonic wind-tunnel measurements of boundary-layer pressure fluctuations
,” in
39th AIAA Fluid Dynamics Conference
(
AIAA
,
2009
), p.
4054
.
27.
C.
Alba
,
K.
Casper
,
S.
Beresh
, and
S.
Schneider
, “
Comparison of experimentally measured and computed second-mode disturbances in hypersonic boundary-layers
,” in
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
AIAA
,
2010
), p.
897
.
28.
J.
Lim
,
M.
Kim
,
J.
Park
,
T.
Kim
,
S.
Jee
, and
D.
Park
, “
Simulation of hypersonic boundary layer on porous surfaces using OpenFOAM
,”
Comput. Fluids
240
,
105437
(
2022
).
29.
D.
Park
, “
Linear and non-linear stability analysis of boundary layers over a hump by using PSE
,” Ph.D. thesis (
Kaist
,
2013
).
30.
F. M.
White
,
Viscous Fluid Flow
, 3rd ed. (
McGraw-Hill
,
2006
), Chap. 4.10.2, pp.
293
294
.
31.
J.
Sivasubramanian
and
H. F.
Fasel
, “
Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6
,”
J. Fluid Mech.
756
,
600
649
(
2014
).
32.
F. M.
White
,
Viscous Fluid Flow
, 3rd ed. (
McGraw-Hill
,
2006
), Chap. 1–3.7, pp.
26
28
.
33.
D.
Modesti
and
S.
Pirozzoli
, “
A low-dissipative solver for turbulent compressible flows on unstructured meshes, with OpenFOAM implementation
,”
Comput. Fluids
152
,
14
23
(
2017
).
34.
S.
Pirozzoli
, “
Generalized conservative approximations of split convective derivative operators
,”
J. Comput. Phys.
229
,
7180
7190
(
2010
).
35.
M.-S.
Liou
, “
A sequel to AUSM: AUSM+
,”
J. Comput. Phys.
129
,
364
382
(
1996
).
36.
M.-S.
Liou
, “
A sequel to AUSM, Part II: AUSM+-up for all speeds
,”
J. Comput. Phys.
214
,
137
170
(
2006
).
37.
F.
Ducros
,
V.
Ferrand
,
F.
Nicoud
,
C.
Weber
,
D.
Darracq
,
C.
Gacherieu
, and
T.
Poinsot
, “
Large-eddy simulation of the shock/turbulence interaction
,”
J. Comput. Phys.
152
,
517
549
(
1999
).
38.
A.
Bhagatwala
and
S.
Lele
, “
A modified artificial viscosity approach for compressible turbulence simulations
,”
J. Comput. Phys.
228
,
4965
4969
(
2009
).
39.
D.
Fuciarelli
,
H.
Reed
, and
I.
Lyttle
, “
DNS of leading-edge receptivity to sound
,” in
29th AIAA Fluid Dynamics Conference
(
AIAA
,
1998
), p.
2644
.
40.
B.
Aupoix
and
P.
Spalart
, “
Extensions of the Spalart-Allmaras turbulence model to account for wall roughness
,”
Int. J. Heat Fluid Flow
24
,
454
462
(
2003
).
41.
P.
Spalart
and
S.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” in
30th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
1992
), p.
439
.
42.
C. L.
Rumsey
, “
Apparent transition behavior of widely-used turbulence models
,”
Int. J. Heat Fluid Flow
28
,
1460
1471
(
2007
).
43.
S. L.
Krist
,
R. T.
Biedron
, and
C. L.
Rumsey
, “
CFL3D user's manual (version 5.0)
,”
Technical Report NASA-TM-1998-208444
(
National Aeronautics and Space Administration
,
1998
).
44.
P. L.
Roe
, “
Approximate Riemann solvers, parameter vectors, and difference schemes
,”
J. Comput. Phys.
43
,
357
372
(
1981
).
45.
T.
Pulliam
, “
Time accuracy and the use of implicit methods
,” in
11th AIAA Computational Fluid Dynamics Conference
(
AIAA
,
1993
), p.
3360
.
46.
J. D.
Anderson
,
Modern Compressible Flow: With Historical Perspective
, 2nd ed. (
McGraw Hill
,
1990
), Chap. 10, pp.
294
306
.
47.
D.
Givoli
, “
Non-reflecting boundary conditions
,”
J. Comput. Phys.
94
,
1
29
(
1991
).
48.
F. M.
White
,
Viscous Fluid Flow
, 3rd ed. (
McGraw-Hill
,
2006
), Chap. 7.8, pp.
553
561
.
49.
K. J.
Franko
and
S. K.
Lele
, “
Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers
,”
J. Fluid Mech.
730
,
491
532
(
2013
).
50.
B. C.
Chynoweth
,
S. P.
Schneider
,
C.
Hader
,
H.
Fasel
,
A.
Batista
,
J.
Kuehl
,
T. J.
Juliano
, and
B. M.
Wheaton
, “
History and progress of boundary-layer transition on a Mach-6 flared cone
,”
J. Spacecr. Rockets
56
,
333
346
(
2019
).
51.
E.
Van Driest
, “
Turbulent boundary layer on a cone in a supersonic flow at zero angle of attack
,”
J. Aeronaut. Sci.
19
,
55
57
(
1952
).
You do not currently have access to this content.