Thermoplastic fiber-reinforced composites such as glass fiber-reinforced polypropylene are essential in industrial applications for their excellent mechanical properties, thermal stability, and recyclability. The aim of this research is to explore the influence of mold temperature, pressure, and film thickness on fiber tension in melt impregnation process of glass fiber-reinforced polypropylene composites; a mathematical model was developed using the Reynolds equation, Darcy's law, and the continuity equation to evaluate pressure distribution, resin flow, and fiber tension under varying conditions. The model predictions were validated through experimental results including differential scanning calorimetry and scanning electron microscopy. The experimental results show that a higher mold temperature of 250°C improves impregnation quality, reduces void content, and enhances the bonding between glass fibers and the polypropylene matrix. MATLAB simulation showed a direct relationship between pressure, temperature, and film thickness in controlling fiber tension. These findings highlight the critical role of precise processing parameter control in achieving optimal impregnation quality, providing valuable insights for industrial applications in thermoplastic composites manufacturing.

1.
J.
Agarwal
,
S.
Sahoo
,
S.
Mohanty
, and
S. K.
Nayak
, “
Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: A review
,”
J. Thermoplast. Compos. Mater.
33
,
978
1013
(
2020
).
2.
F.
Ozturk
,
M.
Cobanoglu
, and
R. E.
Ece
, “
Recent advancements in thermoplastic composite materials in aerospace industry
,”
J. Thermoplast. Compos. Mater.
37
,
3084
3116
(
2024
).
3.
S.
Panthapulakkal
,
L.
Raghunanan
,
M.
Sain
,
B.
KC
, and
J.
Tjong
,
Natural Fiber and Hybrid Fiber Thermoplastic Composites: Advancements in Lightweighting Applications, Green Composites
(
Elsevier
,
2017
), pp.
39
72
.
4.
U. K.
Vaidya
and
K.
Chawla
, “
Processing of fibre reinforced thermoplastic composites
,”
Int. Mater. Rev.
53
,
185
218
(
2008
).
5.
I.
Baran
,
PULTRUSION: State-of-the-Art Process Models with Applications
(
Elsevier
,
2023
).
6.
W.
Van De Steene
,
A Generic Process for Impregnation and Additive Manufacturing of Endless Fibre-Reinforced Thermoplastic Composites
(
Ghent University
,
2020
).
7.
Y.
An
,
J. H.
Myung
,
J.
Yoon
, and
W.-R.
Yu
, “
Three-dimensional printing of continuous carbon fiber-reinforced polymer composites via in-situ pin-assisted melt impregnation
,”
Addit. Manuf.
55
,
102860
(
2022
).
8.
J.
Garofalo
and
D.
Walczyk
, “
In situ impregnation of continuous thermoplastic composite prepreg for additive manufacturing and automated fiber placement
,”
Composites Part A
147
,
106446
(
2021
).
9.
M.
Roller
, “
Characterization of the time‐temperature‐viscosity behavior of curing B‐staged epoxy resin
,”
Polym. Eng. Sci.
15
,
406
414
(
1975
).
10.
J.-H.
Lee
,
C.-M.
Um
, and
I-b
Lee
, “
Rheological properties of resin composites according to variations in monomer and filler composition
,”
Dent. Mater.
22
,
515
526
(
2006
).
11.
S.
Amico
and
C.
Lekakou
, “
An experimental study of the permeability and capillary pressure in resin-transfer moulding
,”
Compos. Sci. Technol.
61
,
1945
1959
(
2001
).
12.
J.
Slade
,
K.
Pillai
, and
S.
Advani
, “
Investigation of unsaturated flow in woven, braided and stitched fiber mats during mold‐filling in resin transfer molding
,”
Polym. Compos.
22
,
491
505
(
2001
).
13.
R.
Shen
,
T.
Liu
,
H.
Liu
,
X.
Zou
,
Y.
Gong
, and
H.
Guo
, “
An enhanced vacuum-assisted resin transfer molding process and its pressure effect on resin infusion behavior and composite material performance
,”
Polymers
16
,
1386
(
2024
).
14.
M.
Valente
,
I.
Rossitti
, and
M.
Sambucci
, “
Different production processes for thermoplastic composite materials: Sustainability versus mechanical properties and processes parameter
,”
Polymers
15
,
242
(
2023
).
15.
T.
Höftberger
,
G.
Zitzenbacher
, and
C.
Burgstaller
, “
Influence of processing parameters in injection molding on the properties of short carbon and glass fiber reinforced polypropylene composites
,”
Polymers
16
,
2745
(
2024
).
16.
N. A.
Rahman
,
A.
Hassan
,
R.
Yahya
, and
R.
Lafia-Araga
, “
Impact properties of glass-fiber/polypropylene composites: The influence of fiber loading, specimen geometry and test temperature
,”
Fibers Polym.
14
,
1877
1885
(
2013
).
17.
A.
Kabiri
,
G.
Liaghat
,
F.
Alavi
,
H.
Saidpour
,
S. K.
Hedayati
,
M.
Ansari
, and
M.
Chizari
, “
Glass fiber/polypropylene composites with potential of bone fracture fixation plates: Manufacturing process and mechanical characterization
,”
J. Compos. Mater.
54
,
4903
4919
(
2020
).
18.
F.
Asoodeh
,
M.
Aghvami-Panah
,
S.
Salimian
,
M.
Naeimirad
,
H.
Khoshnevis
, and
A.
Zadhoush
, “
The effect of fibers' length distribution and concentration on rheological and mechanical properties of glass fiber–reinforced polypropylene composite
,”
J. Ind. Text.
51
,
8452S
8471S
(
2022
).
19.
S.-Y.
Fu
,
B.
Lauke
,
E.
Mäder
,
C.-Y.
Yue
,
X.
Hu
, and
Y.-W.
Mai
,
J. Mater. Sci.
36
,
1243
1251
(
2001
).
20.
G. A.
Lyngdoh
and
S.
Das
, “
Elucidating the interfacial bonding behavior of over-molded hybrid fiber reinforced polymer composites: Experiment and multiscale numerical simulation
,”
ACS Appl. Mater. Interfaces
14
,
43666
43680
(
2022
).
21.
H.
Song
,
C.
Xin
,
G.
Li
,
Q.
Li
,
B.
Yan
, and
Y.
He
, “
Analysis of the impregnation process in the preparation of long glass fiber reinforced polypropylene composites
,”
J. Beijing Univ. Chem. Technol.
40
,
31
36
(
2013
).
22.
Y.
Liu
,
Y.
Yang
,
Y.
He
,
C.
Xin
,
F.
Ren
, and
Y.
Yu
, “
Experimental investigation on effects of ultrasonic process parameters on the degree of impregnation of BF/PP composites
,”
Mater. Res. Express
11
,
045303
(
2024
).
23.
K.
Tang
,
C.
Xin
,
C.
Zhang
,
B.
Yan
,
F.
Ren
, and
Y.
He
, “
The impregnation model and characterization of continuous fiber reinforced polypropylene composites
,”
J. Beijing Univ. Chem. Technol.
42
,
44
49
(
2015
).
24.
Y.
Li
,
M.
Cao
,
C.
Xin
,
F.
Ren
,
J.
Dai
, and
Y.
He
, “
Viscosity reduction of continuous glass fiber reinforced polypropylene prepared by melt impregnation
,”
J. Beijing Univ. Chem. Technol.
45
,
30
35
(
2018
).
25.
F.
Ren
,
Y.
Yu
,
J.
Yang
,
C.
Xin
, and
Y.
He
, “
A mathematical model for continuous fiber reinforced thermoplastic composite in melt impregnation
,”
Appl. Compos. Mater.
24
,
675
690
(
2017
).
26.
T.
Tikuisis
and
V.
Dang
,
Plastics Additives: An AZ Reference
(
Springer
Dordrecht
,
1998
), pp.
80
94
.
27.
N.
Haider
and
S.
Karlsson
, “
Kinetics of migration of antioxidants from polyolefins in natural environments as a basis for bioconversion studies
,”
Biomacromolecules
1
,
481
487
(
2000
).
28.
H. S.
Kim
,
K. Y.
Lee
,
J. S.
Jung
,
H. S.
Sin
,
H. G.
Lee
,
D. Y.
Jang
,
S. H.
Lee
,
K. M.
Lim
, and
D.
Choi
, “
Comparison of migration and cumulative risk assessment of antioxidants, antioxidant degradation products, and other non-intentionally added substances from plastic food contact materials
,”
Food Packaging Shelf Life
35
,
101037
(
2023
).
29.
W. W.
Müller
,
I.
Jakob
,
C.
Li
, and
R.
Tatzky-Gerth
, “
Antioxidant depletion and Oit values of high impact PP strands
,”
Chin. J. Polym. Sci.
27
,
435
445
(
2009
).
30.
H.
Hedayati Velis
,
M.
Golzar
, and
O.
Yousefzade
, “
Composites based on HDPE, jute fiber, wood, and thermoplastic starch in tubular pultrusion die: The correlation between mechanical performance and microstructure
,”
Adv. Polym. Tech.
37
,
3483
3491
(
2018
).
31.
A.
Gibson
and
J.-A.
Månson
, “
Impregnation technology for thermoplastic matrix composites
,”
Compos. Manuf.
3
,
223
233
(
1992
).
32.
A. G.
Gibson
and
J.-A.
Månson
, “
Impregnation technology for thermoplastic matrix composites
,”
Comp. Manufac.
3
(
4
),
223
233
(
1992
).
33.
C.
Hickey
and
S.
Bickerton
, “
Cure kinetics and rheology characterisation and modelling of ambient temperature curing epoxy resins for resin infusion/VARTM and wet layup applications
,”
J. Mater. Sci.
48
,
690
701
(
2013
).
34.
A.
Paramasivam
,
M. V.
Timmaraju
, and
R.
Velmurugan
, “
Influence of preheating on the fracture behavior of over-molded short/continuous fiber reinforced polypropylene composites
,”
J. Compos. Mater.
55
,
4387
4397
(
2021
).
35.
K.
Friedrich
,
S.
Fakirov
,
Z.
Zhang
,
J. P.
Nunes
,
F. W.
van Hattum
,
C. A.
Bernardo
,
A. M.
Brito
,
A. S.
Pouzada
,
J. F.
Silva
, and
A. T.
Marques
,
Polymer Composites: From Nano-to Macro-Scale
189
213
(
Springer
New York
,
2005
).
36.
R. L.
Blaine
, “
Polymer heats of fusion,” Report No. TN048
(
2002
).
37.
Y.
Wang
,
L.
Cheng
,
X.
Cui
, and
W.
Guo
, “
Crystallization behavior and properties of glass fiber reinforced polypropylene composites
,”
Polymers
11
,
1198
(
2019
).
You do not currently have access to this content.