The three-dimensional flow around two bubbles placed in tandem in a viscous fluid is studied by direct numerical simulations. The effect of parameters including the Reynolds number of the bubble Re[50,200], the center-to-center distance of two bubbles S[1.25,6], and the aspect ratios of the bubbles χ[1,2.5] on the flow fields, the drag forces, and the equilibrium separation distances is analyzed. The results show that no obvious flow vortex appears behind the spherical bubble opposite to the sphere, indicating that the disturbance to the flow field is much weaker than that of the sphere. This difference can be mainly attributed to the free-slip boundary of the bubble surface. The increase in Reynolds number and the decrease in the separation distance mainly affect the pressure drag of the bubbles, rather than the viscous drag. An equilibrium distance exists between the two bubbles depending on the competition of the attraction effect of the wake and the repulsion effect of the potential flow, due to the fact that the drag force of the downstream bubble may larger than that of a single bubble at a short distance caused by the latter effect. When the bubble becomes non-spherical due to deformation, the increase in the bubble aspect ratio can significantly enhance the wake effect, while almost keep the potential flow effect almost unchanging. This reduces the drag of the downstream bubbles, thereby shortening the equilibrium distance between the bubbles. These findings provide an important theoretical basis for understanding the interactions between bubbles and the collective dynamics of bubbly flows.

1.
H.
Kim
and
P.
Durbin
, “
Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation
,”
Phys. Fluids
31
,
3260
3265
(
1988
).
2.
I.
Kim
,
S.
Elghobashi
, and
W. A.
Sirignano
, “
Three-dimensional flow over two spheres placed side by side
,”
J. Fluid Mech.
246
,
465
488
(
1993
).
3.
R.
Tal
,
D. N.
Lee
, and
W. A.
Sirignano
, “
Heat and momentum transfer around a pair of spheres in viscous flow
,”
Int. J. Heat Mass Transfer
27
,
1953
1962
(
1984
).
4.
L.
Schouveiler
,
A.
Brydon
,
T.
Leweke
, and
M. C.
Thompson
, “
Interactions of the wakes of two spheres placed side by side
,”
Eur. J. Mech.-B/Fluids
23
,
137
145
(
2004
).
5.
D.-H.
Yoon
and
K.-S.
Yang
, “
Flow-induced forces on two nearby spheres
,”
Phys. Fluids
19
,
098103
(
2007
).
6.
D.-H.
Yoon
and
K.-S.
Yang
, “
Characterization of flow pattern past two spheres in proximity
,”
Phys. Fluids
21
,
073603
(
2009
).
7.
A.
Kumar
,
S.
Tiwari
, and
S. P.
Das
, “
Effect of size and spacing on the wake characteristics of two spheres placed in tandem
,”
Phys. Fluids
35
,
053601
(
2023
).
8.
C.-L.
Chiu
,
C.-M.
Fan
, and
C.-R.
Chu
, “
Numerical analysis of two spheres falling side by side
,”
Phys. Fluids
34
,
072112
(
2022
).
9.
C.-R.
Chu
,
T.-R.
Wu
,
Y.-F.
Tu
,
S.-K.
Hu
, and
C.-L.
Chiu
, “
Interaction of two free-falling spheres in water
,”
Phys. Fluids
32
,
033304
(
2020
).
10.
H.
Yuan
and
A.
Prosperetti
, “
On the in-line motion of two spherical bubbles in a viscous fluid
,”
J. Fluid Mech.
278
,
325
349
(
1994
).
11.
D.
Legendre
,
J.
Magnaudet
, and
G.
Mougin
, “
Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid
,”
J. Fluid Mech.
497
,
133
166
(
2003
).
12.
G.
Kong
,
H.
Mirsandi
,
K.
Buist
,
E.
Peters
,
M.
Baltussen
, and
J.
Kuipers
, “
Hydrodynamic interaction of bubbles rising side-by-side in viscous liquids
,”
Exp. Fluids
60
,
1
15
(
2019
).
13.
Y.
Hallez
and
D.
Legendre
, “
Interaction between two spherical bubbles rising in a viscous liquid
,”
J. Fluid Mech.
673
,
406
431
(
2011
).
14.
Z.
Fang
,
J.
Zhang
,
Q.
Xiong
,
F.
Xu
, and
M.
Ni
, “
Spatiotemporal evolutions of forces and vortices of flow past ellipsoidal bubbles: Direct numerical simulation based on a Cartesian grid scheme
,”
Phys. Fluids
33
,
012108
(
2021
).
15.
W.
Yuan
,
M.
Zhang
,
B. C.
Khoo
, and
N.
Phan-Thien
, “
Hydrodynamic interaction and coalescence of two inline bubbles rising in a viscoelastic liquid
,”
Phys. Fluids
33
,
083102
(
2021
).
16.
J.
Zhang
,
M.-J.
Ni
, and
J.
Magnaudet
, “
Three-dimensional dynamics of a pair of deformable bubbles rising initially in line. Part 1. Moderately inertial regimes
,”
J. Fluid Mech.
920
,
A16
(
2021
).
17.
J.
Zhang
,
M.-J.
Ni
, and
J.
Magnaudet
, “
Three-dimensional dynamics of a pair of deformable bubbles rising initially in line. part 2. highly inertial regimes
,”
J. Fluid Mech.
943
,
A10
(
2022
).
18.
A.
Kumar
,
B.
Ray
, and
G.
Biswas
, “
Dynamics of two coaxially rising gas bubbles
,”
Phys. Fluids
33
,
052106
(
2021
).
19.
H.
Kusuno
and
T.
Sanada
, “
Wake-induced lateral migration of approaching bubbles
,”
Int. J. Multiphase Flow
139
,
103639
(
2021
).
20.
Y.
Cao
and
R.
Macián-Juan
, “
The wobbling motion of single and two inline bubbles rising in quiescent liquid
,”
Phys. Fluids
33
,
073305
(
2021
).
21.
A.
Ghanavati
,
S.
Khodadadi
,
M. H.
Taleghani
,
M.
Gorji-Bandpy
, and
D.
Domiri Ganji
, “
Numerical simulation of the motion and interaction of bubble pair rising in a quiescent liquid
,”
Appl. Ocean Res.
141
,
103769
(
2023
).
22.
J.
Harper
, “
On bubbles rising in line at large Reynolds numbers
,”
J. Fluid Mech.
41
,
751
758
(
1970
).
23.
H.
Mirsandi
,
G.
Kong
,
K.
Buist
,
M.
Baltussen
,
E.
Peters
, and
J.
Kuipers
, “
Numerical study on the interaction of two bubbles rising side-by-side in viscous liquids
,”
Chem. Eng. J.
410
,
128257
(
2021
).
24.
J.
Katz
and
C.
Meneveau
, “
Wake-induced relative motion of bubbles rising in line
,”
Int. J. Multiphase Flow
22
,
239
258
(
1996
).
25.
M.
Watanabe
and
T.
Sanada
, “
In-line motion of a pair of bubbles in a viscous liquid
,”
JSME Int. J, Ser. B
49
,
410
418
(
2006
).
26.
H.
Kusuno
,
H.
Yamamoto
, and
T.
Sanada
, “
Lift force acting on a pair of clean bubbles rising in-line
,”
Phys. Fluids
31
,
072105
(
2019
).
27.
J.
Ramírez-Muñoz
,
E.
Salinas-Rodríguez
,
A.
Soria
, and
A.
Gama-Goicochea
, “
Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects
,”
Nucl. Eng. Des.
241
,
2371
2377
(
2011
).
28.
M.
Gumulya
,
R.
Utikar
,
G.
Evans
,
J.
Joshi
, and
V.
Pareek
, “
Interaction of bubbles rising inline in quiescent liquid
,”
Chem. Eng. Sci.
166
,
1
10
(
2017
).
29.
F.
Capuano
,
N.
Beratlis
,
F.
Zhang
,
Y.
Peet
,
K.
Squires
, and
E.
Balaras
, “
Cost vs accuracy: DNS of turbulent flow over a sphere using structured immersed-boundary, unstructured finite-volume, and spectral-element methods
,”
Eur. J. Mech.-B/Fluids
102
,
91
102
(
2023
).
30.
T.
Johnson
and
V.
Patel
, “
Flow past a sphere up to a Reynolds number of 300
,”
J. Fluid Mech.
378
,
19
70
(
1999
).
31.
R.
Mei
,
J. F.
Klausner
, and
C. J.
Lawrence
, “
A note on the history force on a spherical bubble at finite Reynolds number
,”
Phys. fluids
6
,
418
420
(
1994
).
32.
L.
Prahl
,
A.
Hölzer
,
D.
Arlov
,
J.
Revstedt
,
M.
Sommerfeld
, and
L.
Fuchs
, “
On the interaction between two fixed spherical particles
,”
Int. J. Multiphase Flow
33
,
707
725
(
2007
).
33.
T. R.
Jayawickrama
,
M.
Chishty
,
N. E. L.
Haugen
,
M. U.
Babler
, and
K.
Umeki
, “
The effects of Stefan flow on the flow surrounding two closely spaced particles
,”
Int. J. Multiphase Flow
166
,
104499
(
2023
).
34.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Courier Corporation
,
2005
).
35.
J. F.
Harper
, “
Bubbles rising in line: Why is the first approximation so bad?
,”
J. Fluid Mech.
351
,
289
300
(
1997
).
You do not currently have access to this content.