The shielding effects of neighboring particles on the flocculation dynamics of cohesive sediment in homogeneous isotropic turbulence is investigated using a two-phase particle-unresolved, but turbulence-resolved, Euler–Lagrange simulations. A coupled CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) framework was applied, in which the discrete element method model captures collisional interactions among particles. The high-resolution grid used in the CFD resolves all the turbulent scales. The primary particles are substantially smaller than the Kolmogorov length scale, therefore, flow around particles is not resolved and the fluid–particle interactions are modeled by force models. The present work employs the semiempirical force model of Kim and Lee (KL), in which the multibody interactions between the particles that makeup a floc are modeled as functions of pairwise interactions among particles. In comparison, the widely used free-draining approximation (FDA) uses Stokes drag of individual particles and completely ignores all inter-particle interactions within the floc. Most importantly, we observe that by allowing more accurate hydrodynamic interactions among the fractal floc members, the KL method predicts much larger flocs at equilibrium. By including the intra-floc shielding effects, the KL model predicts the floc settling velocity to substantially increase with floc size, in contrast to the FDA model. The aggregation and breakup kernels follow qualitatively similar patterns for both the FDA and KL models. For future work, a computationally efficient and accurate force model for fractal floc shapes needs to be developed for better predictions of the flocculation processes of cohesive sediment.

1.
Alldredge
,
A. L.
and
Silver
,
M. W.
, “
Characteristics, dynamics and significance of marine snow
,”
Prog. Oceanogr.
20
,
41
82
(
1988
).
2.
Balachandar
,
S.
, “
A scaling analysis for point–particle approaches to turbulent multiphase flows
,”
Int. J. Multiphase Flow
35
,
801
810
(
2009
).
3.
Balachandar
,
S.
,
Fundamentals of Dispersed Multiphase Flows
(
Cambridge University Press
,
2024
).
4.
Balachandar
,
S.
and
Eaton
,
J. K.
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
133
(
2010
).
5.
Becker
,
V.
,
Schlauch
,
E.
,
Behr
,
M.
, and
Briesen
,
H.
, “
Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation
,”
J. Colloid Interface Sci.
339
,
362
372
(
2009
).
6.
Brady
,
J. F.
and
Bossis
,
G.
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
(1),
111
157
.
7.
Chung
,
E. G.
,
Bombardelli
,
F. A.
, and
Schladow
,
S. G.
, “
Modeling linkages between sediment resuspension and water quality in a shallow, eutrophic, wind-exposed lake
,”
Ecol. Modell.
220
,
1251
1265
(
2009
).
8.
Debye
,
P.
and
Bueche
,
A. M.
, “
Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution
,”
J. Chem. Phys.
16
,
573
579
(
1948
).
9.
Deng
,
Z.
,
He
,
Q.
,
Safar
,
Z.
, and
Chassagne
,
C.
, “
The role of algae in fine sediment flocculation: In-situ and laboratory measurements
,”
Mar. Geol.
413
,
71
84
(
2019
).
10.
Drake
,
T. G.
and
Calantoni
,
J.
, “
Discrete particle model for sheet flow sediment transport in the nearshore
,”
J. Geophys. Res. Oceans
106
,
19859
19868
, https://doi.org/10.1029/2000JC000611 (
2001
).
11.
Droppo
,
I. G.
, “
Rethinking what constitutes suspended sediment
,”
Hydrol. Processes
15
,
1551
1564
(
2001
).
12.
Filippov
,
A.
, “
Drag and torque on clusters of N arbitrary spheres at low Reynolds number
,”
J. Colloid Interface Sci.
229
,
184
195
(
2000
).
13.
Fischer
,
P. F.
, “
An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
133
,
84
101
(
1997
).
14.
Fischer
,
P. F.
,
Lottes
,
J. W.
, and
Kerkemeier
,
S. G.
, see http://nek5000.mcs.anl.gov for “Nek5000” (2008).
15.
Haervig
,
J.
,
Kleinhans
,
U.
,
Wieland
,
C.
,
Spliethoff
,
H.
,
Jensen
,
A.
,
Sørensen
,
K.
, and
Condra
,
T.
, “
On the adhesive JKR contact and rolling models for reduced particle stiffness discrete element simulations
,”
Powder Technol.
319
,
472
482
(
2017
).
16.
Harshe
,
Y.
and
Lattuada
,
M.
, “
Breakage rate of colloidal aggregates in shear flow through Stokesian dynamics
,”
Langmuir
28
,
283
292
(
2012
).
17.
Harshe
,
Y. M.
,
Lattuada
,
M.
, and
Soos
,
M.
, “
Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates
,”
Langmuir
27
,
5739
5752
(
2011
).
18.
Higashitani
,
K.
,
Iimura
,
K.
, and
Sanda
,
H.
, “
Simulation of deformation and breakup of large aggregates in flows of viscous fluids
,”
Chem. Eng. Sci.
56
,
2927
2938
(
2001
).
19.
Jeffrey
,
D. J.
and
Onishi
,
Y.
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
261
290
(
1984
).
20.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. A. D.
, “
Surface energy and the contact of elastic solids
,”
Proc. R. Soc. London A Math. Phys. Sci.
324
,
301
313
(
1971
).
21.
Khelifa
,
A.
and
Hill
,
P. S.
, “
Models for effective density and settling velocity of flocs
,”
J. Hydraul. Res.
44
,
390
401
(
2006
).
22.
Kim
,
J.
and
Lee
,
S.
, “
Modeling drag force acting on the individual particles in low Reynolds number flow
,”
Powder Technol.
261
,
22
32
(
2014
).
23.
Kranenburg
,
C.
, “
The fractal structure of cohesive sediment aggregates
,”
Estuarine. Coast. Shelf Sci.
39
,
451
460
(
1994
).
24.
Krone
,
R. B.
,
The Significance of Aggregate Properties to Transport Processes
(
Springer
,
1986
), pp.
66
84
.
25.
Lee
,
B. J.
,
Fettweis
,
M.
,
Toorman
,
E.
, and
Molz
,
F.
, “
Multimodality of a particle size distribution of cohesive suspended particulate matters in a coastal zone
,”
J. Geophys. Res. Oceans
117
,
C03014
, https://doi.org/10.1029/2011JC007552 (
2012
).
26.
van Leussen
,
W.
, “
Estuarine macroflocs and their role in fine-grained sediment transport
,” Ph.D. thesis (
University of Utrecht
,
1994
).
27.
Luding
,
S.
, “
Cohesive, frictional powders: Contact models for tension
,”
Granular Matter
10
,
235
246
(
2008
).
28.
Lundgren
,
T. S.
, “
Linearly forces isotropic turbulence
,” Ph.D. thesis (
Minnesota Univ Minneapolis
,
2003
).
29.
Maday
,
Y.
,
Patera
,
A. T.
, and
Rønquist
,
E. M.
, “
An operator-integration factor splitting method for time-dependent problems: Application to incompressible fluid flow
,”
J. Sci. Comput.
5
,
263
292
(
1990
).
30.
Maggi
,
F.
, “
Variable fractal dimension: A major control for floc structure and flocculation kinematics of suspended cohesive sediment
,”
J. Geophys. Res. Oceans
112
,
C07012
, https://doi.org/10.1029/2006JC003951 (
2007
).
31.
McAnally
,
W. H.
and
Mehta
,
A. J.
, “
Aggregation rate of fine sediment
,”
J. Hydraul. Eng.
126
,
883
892
(
2000
).
32.
McAnally
,
W. H.
and
Mehta
,
A. J.
, “
Significance of aggregation of fine sediment particles in their deposition
,”
Estuar. Coast. Shelf Sci.
54
,
643
653
(
2002
).
33.
McAnally
,
W. H.
,
Mehta
,
A. J.
, and
Manning
,
A. J.
, “
Observations on floc settling velocities in the Tamar estuary, United Kingdom
,”
J. Waterw. Port Coast. Ocean Eng.
147
,
04021015
(
2021
).
34.
Mietta
,
F.
,
Chassagne
,
C.
,
Manning
,
A. J.
, and
Winterwerp
,
J. C.
, “
Influence of shear rate, organic matter content, pH and salinity on mud flocculation
,”
Ocean Dyn.
59
,
751
763
(
2009
).
35.
Morán
,
J.
,
Fuentes
,
A.
,
Liu
,
F.
, and
Yon
,
J.
, “
Fracval: An improved tunable algorithm of cluster–cluster aggregation for generation of fractal structures formed by polydisperse primary particles
,”
Comput. Phys. Commun.
239
,
225
237
(
2019
).
36.
Ongley
,
E. D.
,
Krishnappan
,
B. G.
,
Droppo
,
G.
,
Rao
,
S. S.
, and
Maguire
,
R. J.
, “
Cohesive sediment transport: Emerging issues for toxic chemical management
,”
Hydrobiologia
235
,
177
187
(
1992
).
37.
Potanin
,
A.
, “
On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow
,”
J. Colloid Interface Sci.
157
,
399
410
(
1993
).
38.
Ramkrishna
,
D.
,
Population Balances: Theory and Applications to Particulate Systems in Engineering
(
Elsevier
,
2000
).
39.
Rosales
,
C.
and
Meneveau
,
C.
, “
Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties
,”
Phys. Fluids
17
,
095106
(
2005
).
40.
Saxena
,
A.
,
Kroll-Rabotin
,
J.
, and
Sanders
,
R.
, “
Numerical investigation of the respective roles of cohesive and hydrodynamic forces in aggregate restructuring under shear flow
,”
J. Colloid Interface Sci.
608
,
355
365
(
2022
).
41.
Schmeeckle
M. A.
, “
Numerical simulation of turbulence and sediment transport of medium sand
,”
J. Geophys. Res. Earth Surf.
119
,
1240
1262
, https://doi.org/10.1002/2013JF002911 (
2014
).
42.
Sierou
,
A.
and
Brady
,
J. F.
, “
Accelerated Stokesian dynamics simulations
,”
J. Fluid Mech.
448
,
115
146
(
2001
).
43.
Spencer
,
K. L.
,
Wheatland
,
J. A.
,
Bushby
,
A. J.
,
Carr
,
S. J.
,
Droppo
,
I. G.
, and
Manning
,
A. J.
, “
A structure–function based approach to floc hierarchy and evidence for the non-fractal nature of natural sediment flocs
,”
Sci. Rep.
11
,
14012
(
2021
).
44.
Tambo
,
N.
and
Watanabe
,
Y.
, “
Physical characteristics of flocs—I. The floc density function and aluminium floc
,”
Water Res.
13
,
409
419
(
1979
).
45.
Tambo
,
N.
and
Watanabe
,
Y.
, “
Physical aspect of flocculation process—III: Flocculation process in a continuous flow flocculator with a back-mix flow
,”
Water Res.
18
,
695
707
(
1984
).
46.
Uncles
,
R. J.
,
Stephens
,
J. A.
, and
Harris
,
C.
, “
Seasonal variability of subtidal and intertidal sediment distributions in a muddy, macrotidal estuary: The Humber-Ouse, UK
,”
Geol. Soc.
139
,
211
219
(
1998
).
47.
Verney
,
R.
,
Lafite
,
R.
,
Brun-Cottan
,
J. C.
, and
Le Hir
,
P.
, “
Behaviour of a floc population during a tidal cycle: Laboratory experiments and numerical modelling
,”
Cont. Shelf Res.
31
,
S64
S83
(
2011
).
48.
Wheatland
,
J. A.
,
Bushby
,
A. J.
, and
Spencer
,
K. L.
, “
Quantifying the structure and composition of flocculated suspended particulate matter using focused ion beam nanotomography
,”
Environ. Sci. Technol.
51
,
8917
8925
(
2017
).
49.
Winterwerp
,
J. C.
, “
A simple model for turbulence induced flocculation of cohesive sediment
,”
J. Hydraul. Res.
36
,
309
326
(
1998
).
50.
Yu
,
M.
,
Yu
,
X.
, and
Balachandar
,
S.
, “
Particle nonresolved DNS-DEM study of flocculation dynamics of cohesive sediment in homogeneous isotropic turbulence
,”
Water Resour. Res.
58
,
e2021WR030402
, https://doi.org/10.1029/2021WR030402 (
2022a
).
51.
Yu
,
M.
,
Yu
,
X.
,
Balachandar
,
S.
, and
Manning
,
A. J.
, “
Floc size distributions of cohesive sediment in homogeneous isotropic turbulence
,”
Front. Earth Sci.
10
,
815652
(
2022b
).
52.
Yu
,
M.
,
Yu
,
X.
,
Mehta
,
A. J.
,
Manning
,
A. J.
,
Khan
,
F.
, and
Balachandar
,
S.
, “
Persistent reshaping of cohesive sediment towards stable flocs by turbulence
,”
Sci. Rep.
13
,
1760
(
2023
).
53.
Zhang
,
N.
,
Thompson
,
C. E.
,
Townend
,
I. H.
,
Rankin
,
K. E.
,
Paterson
,
D. M.
, and
Manning
,
A. J.
, “
Nondestructive 3D imaging and quantification of hydrated biofilm-sediment aggregates using x-ray microcomputed tomography
,”
Environ. Sci. Technol.
52
,
13306
13313
(
2018
).
54.
Zhao
,
K.
,
Pomes
,
F.
,
Vowinckel
,
B.
,
Hsu
,
T.
,
Bai
,
B.
, and
Meiburg
,
E.
, “
Flocculation of suspended cohesive particles in homogeneous isotropic turbulence
,” arXiv:2105.11735 (
2021
).
55.
Zhao
,
K.
,
Vowinckel
,
B.
,
Hsu
,
T.
,
K¨ollner
,
T.
,
Bai
,
B.
, and
Meiburg
,
E.
, “
An efficient cellular flow model for cohesive particle flocculation in turbulence
,”
J. Fluid Mech.
889
,
R3
(
2020
).
You do not currently have access to this content.