This study investigates the effect of natural ventilation on the distribution of airborne pathogens in narrow, low-ceiling corridors typical of hotels, offices, or cruise ships. Two scenarios are examined: a milder cough at 6 m/s and a stronger cough at 12 m/s. A reference baseline case with no airflow is compared to cases featuring an incoming airflow velocity of 1 m/s (3.6 km/h), examining differences in the dispersal of respiratory droplets from two individuals coughing spaced 5 meters apart. Both individuals cough in the direction of the airflow, assuming one-way traffic to minimize airborne pathogen transmission. Findings indicate that airflow accelerates past the door, exceeding 3 m/s, with gusts reaching 4 m/s due to interaction with recirculation zones. This acceleration affects droplet dispersal. Larger droplets (>150  μm) maintain a ballistic trajectory, traveling 2–4 m, potentially increasing transmission risk but suggesting that a 5-m distancing policy could suffice for protection. Smaller droplets (<150  μm), especially those <100μm, spread extensively regardless of cough strength while containing the most viral mass overall. Thus, distancing alone is insufficient. The study recommends that additional safety measures be enforced, such as wearing masks, stricter usage protocols for corridors by limiting corridor use to one person every 20–30 s, or eliminating natural ventilation when feasible to effectively mitigate transmission risks in such environments.

1.
A.
Vologodskii
,
The Basics of Molecular Biology
, 1st ed. (
Springer
Cham
,
2022
), pp.
XIV
.
2.
J.
Paul
,
Disease Causing Microbes
(
Springer
,
2024
).
3.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
, “
Introduction to pathogens
,” in
Molecular Biology of the Cell
, 4th ed. (
Garland Science
,
2002
).
4.
K.
Ritos
,
D.
Drikakis
, and
I.
Kokkinakis
, “
Virus spreading in cruiser cabin
,”
Phys. Fluids
35
,
103329
(
2023
).
5.
T.
Dbouk
,
F.
Roger
, and
D.
Drikakis
, “
Reducing indoor virus transmission using air purifiers
,”
Phys. Fluids
33
,
103301
(
2021
).
6.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
,
063303
(
2020
).
7.
T.
Dbouk
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310
(
2020
).
8.
L.
Morawska
,
Y.
Li
, and
T.
Salthammer
, “
Lessons from the COVID-19 pandemic for ventilation and indoor air quality
,”
Science
385
,
396
401
(
2024
).
9.
L. C.
Marr
and
J. M.
Samet
, “
Reducing transmission of airborne respiratory pathogens: A new beginning as the COVID-19 emergency ends
,”
Environ. Health Perspect.
132
,
055001
(
2024
).
10.
H.
Myung
and
Y. S.
Joung
, “
Contribution of particulates to airborne disease transmission and severity: A review
,”
Environ. Sci. Technol.
58
,
6846
6867
(
2024
).
11.
Y.
Yan
,
X.
Li
,
X.
Fang
,
P.
Yan
, and
J.
Tu
, “
Transmission of COVID-19 virus by cough-induced particles in an airliner cabin section
,”
Eng. Appl. Comput. Fluid Mech.
15
,
934
950
(
2021
).
12.
W.
Wang
,
F.
Wang
,
D.
Lai
, and
Q.
Chen
, “
Evaluation of SARS-CoV-2 transmission and infection in airliner cabins
,”
Indoor Air
32
,
e12979
(
2022
).
13.
F.
Wang
,
T.
Zhang
,
R.
You
, and
Q.
Chen
, “
Evaluation of infection probability of Covid-19 in different types of airliner cabins
,”
Build. Environ.
234
,
110159
(
2023
).
14.
T.
Dbouk
and
D.
Drikakis
, “
On airborne virus transmission in elevators and confined spaces
,”
Phys. Fluids
33
,
011905
(
2021
).
15.
S.
Bushwick
,
T.
Lewis
, and
A.
Montañez
, “
Evaluating COVID risk on planes, trains and automobiles
,”
Sci. Am.
3
,
1
(
2021
); available at https://www.scientificamerican.com/article/evaluating-covid-risk-on-planes-trains-andautomobiles2.
16.
K.
Ritos
,
D.
Drikakis
, and
I. W.
Kokkinakis
, “
The effects of ventilation conditions on mitigating airborne virus transmission
,”
Phys. Fluids
36
,
013322
(
2024
).
17.
X.
Xie
,
Y.
Li
,
T.
Zhang
, and
H.
Fang
, “
Bacterial survival in evaporating deposited droplets on a
eflon-coated surface
,”
Appl. Microbiol. Biotechnol.
73
,
703
712
(
2006
).
18.
N.
van Doremalen
,
T.
Bushmaker
,
D. H.
Morris
,
M. G.
Holbrook
,
A.
Gamble
,
B. N.
Williamson
,
A.
Tamin
,
J. L.
Harcourt
,
N. J.
Thornburg
,
S. I.
Gerber
,
J. O.
Lloyd-Smith
,
E.
de Wit
, and
V. J.
Munster
, “
Aerosol and surface stability of HcoV-19 (SARS-CoV-2) compared to SARS-CoV-1
,”
New Engl J
382
,
1564
1567
(
2020
).
19.
ASHRAE
,
ANSI/ASHRAE Standard 241–2023, Control of Infectious Aerosols
(
ASHRAE
,
2023
).
20.
WHO
,
Roadmap to Improve and Ensure Good Indoor Ventilation in the Context of COVID-19
(
World Health Organization
,
2021
).
21.
REHVA
,
COVID-19 guidance 4.1, How to Operate HVAC and Other Building Service Systems to Prevent the Spread of the Coronavirus (SARS-CoV-2) Disease (COVID-19) in Workplaces
(
Federation of European Heating, Ventilation and Air Conditioning Associations
,
2021
).
22.
FPS
,
Legal Framework Regarding Indoor Air Quality
(
Federal Public Service — Public Health
,
2022
).
23.
CDC
,
COVID-19 Ventilation in Buildings 2023
(
The Centers for Disease Control and Prevention
,
2023
).
24.
C.-B.
Zhao
,
J.-Z.
Wu
,
B.-F.
Wang
,
T.
Chang
,
Q.
Zhou
, and
K. L.
Chong
, “
Numerical study on the onset of global-scale flow from individual buoyant plumes: Implications for indoor disease transmission
,”
Phys. Fluids
36
,
035149
(
2024
).
25.
Q.
Luo
,
J.
Pan
,
J.
Hang
,
Q.
Ma
,
C.
Ou
,
Z.
Luo
, and
L.
Zeng
, “
Effect of natural ventilation on aerosol transmission and infection risk in a minibus
,”
Phys. Fluids
36
,
115116
(
2024
).
26.
Z.
Li
,
X.
Zhang
,
T.
Wu
,
L.
Zhu
,
J.
Qin
, and
X.
Yang
, “
Effects of slope and speed of escalator on the dispersion of cough-generated droplets from a passenger
,”
Phys. Fluids
33
,
041701
(
2021
).
27.
Q.
Li
,
X.
Guan
,
P.
Wu
,
X.
Wang
, and
L.
Zhou
, “
Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia
,”
N Engl. J. Med.
382
,
1199
(
2020
).
28.
G.
Allaire
,
S.
Clerc
, and
S.
Kokh
, “
A five-equation model for the simulation of interfaces between compressible fluids
,”
J. Comput. Phys.
181
,
577
616
(
2002
).
29.
A. W.
Cook
, “
Enthalpy diffusion in multicomponent flows
,”
Phys. Fluids
21
,
055109
(
2009
).
30.
M.
Lappa
,
D.
Drikakis
, and
I.
Kokkinakis
, “
On the propagation and multiple reflections of a blast wave travelling through a dusty gas in a closed box
,”
Phys. Fluids
29
,
033301
(
2017
).
31.
D. O.
Pushkin
,
D. E.
Melnikov
, and
V. M.
Shevtsova
, “
Ordering of small particles in one-dimensional coherent structures by time-periodic flows
,”
Phys. Rev. Lett.
106
,
234501
(
2011
).
32.
D. E.
Melnikov
,
D. O.
Pushkin
, and
V. M.
Shevtsova
, “
Synchronization of finite-size particles by a traveling wave in a cylindrical flow
,”
Phys. Fluids
25
,
092108
(
2013
).
33.
H. C.
Kuhlmann
,
M.
Lappa
,
D.
Melnikov
,
R.
Mukin
,
F. H.
Muldoon
,
D.
Pushkin
,
V.
Shevtsova
, and
I.
Ueno
, “
The JEREMI-Project on thermocapillary convection in liquid bridges. Part A: Overview of particle accumulation structures
,”
Fluid Dyn. Mater. Process.
10
,
1
10
(
2014
).
34.
M.
Lappa
, “
Time reversibility and non-deterministic behaviour in oscillatorily sheared suspensions of non-interacting particles at high Reynolds numbers
,”
Comput. Fluids
184
,
78
90
(
2019
).
35.
S.
Elghobashi
, “
On predicting particle-laden turbulent flows
,”
Appl. Sci. Res.
52
,
309
329
(
1994
).
36.
T.
Bodnár
,
G. P.
Galdi
, and
Š.
Nečasová
,
Particles in Flows
(
Birkhäuser
,
Cham
,
2017
).
37.
L.
Schiller
and
A.
Naumann
, “
Ueber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung
,”
VDI Zeits.
77
,
318
320
(
1933
).
38.
S.
Sazhin
,
Droplets and Sprays
(
Springer-Verlag
,
London, UK
,
2014
).
39.
T.
Dbouk
and
D.
Drikakis
, “
Weather impact on airborne coronavirus survival
,”
Phys. Fluids
32
,
093312
(
2020
).
40.
L. K.
Norvihoho
,
H.
Li
,
Z.-F.
Zhou
,
J.
Yin
,
S.-Y.
Chen
,
D.-Q.
Zhu
, and
B.
Chen
, “
Dispersion of expectorated cough droplets with seasonal influenza in an office
,”
Phys. Fluids
35
,
083302
(
2023
).
41.
M.
Abuhegazy
,
K.
Talaat
,
O.
Anderoglu
, and
S. V.
Poroseva
, “
Numerical investigation of aerosol transport in a classroom with relevance to COVID-19
,”
Phys. Fluids
32
,
103311
(
2020
).
42.
M.
Zhao
,
C.
Zhou
,
T.
Chan
,
C.
Tu
,
Y.
Liu
, and
M.
Yu
, “
Assessment of COVID-19 aerosol transmission in a university campus food environment using a numerical method
,”
Geosci. Front.
13
,
101353
(
2022
).
43.
I. W.
Kokkinakis
,
D.
Drikakis
,
K.
Ritos
, and
S. M.
Spottswood
, “
Direct numerical simulation of supersonic flow and acoustics over a compression ramp
,”
Phys. Fluids
32
,
066107
(
2020
).
44.
D.
Drikakis
,
M.
Hahn
,
A.
Mosedale
, and
B.
Thornber
, “
Large eddy simulation using high-resolution and high-order methods
,”
Phil. Trans. R Soc. A
367
,
2985
2997
(
2009
).
45.
F.
Grinstein
,
L.
Margolin
, and
W.
Rider
, eds.,
Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
2007
).
46.
A.
Mosedale
and
D.
Drikakis
, “
Assessment of very high order of accuracy in implicit LES models
,”
J. Fluids Eng.
129
,
1497
1503
(
2007
).
47.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction
, 3rd ed. (
Springer-Verlag
Berlin Heidelberg
,
2009
).
48.
I.
Kokkinakis
and
D.
Drikakis
, “
Implicit large eddy simulation of weakly-compressible turbulent channel flow
,”
Comput. Methods Appl. Mech. Eng.
287
,
229
261
(
2015
).
49.
D.
Drikakis
and
P. K.
Smolarkiewicz
, “
On spurious vortical structures
,”
J. Comput. Phys.
172
,
309
325
(
2001
).
50.
D.
Drikakis
and
S.
Tsangaris
, “
On the solution of the compressible Navier–Stokes equations using improved flux vector splitting methods
,”
Appl. Math. Model.
17
,
282
297
(
1993
).
51.
R.
Spiteri
and
S.
Ruuth
, “
A new class of optimal high-order strong-stability-preserving time discretization methods
,”
SIAM J. Numer. Anal.
40
,
469
491
(
2002
).
52.
H. Y. W.
Cheung
,
P.
Kumar
,
S.
Hama
,
A. P. M.
Emygdio
,
Y.
Wei
,
L.
Anagnostopoulos
,
J.
Ewer
,
V.
Ferracci
,
E. R.
Galea
,
A.
Grandison
,
C.
Hadjichristodoulou
,
F.
Jia
,
P.
Lepore
,
L.
Morawska
,
V. A.
Mouchtouri
,
N.
Siilin
, and
Z.
Wang
, “
Monitoring of indoor air quality at a large sailing cruise ship to assess ventilation performance and disease transmission risk
,”
Sci. Total Environ.
962
,
178286
(
2025
).
53.
X.
Xie
,
Y.
Li
,
H.
Sun
, and
L.
Liu
, “
Exhaled droplets due to talking and coughing
,”
J. R. Soc. Interface
6
,
703
714
(
2009
).
54.
J. P.
Duguid
, “
The numbers and the sites of origin of the droplets expelled during expiratory activities
,”
Edinb. Med. J.
52
,
385
401
(
1945
).
55.
J. P.
Duguid
, “
The size and the duration of air-carriage of respiratory droplets and droplet-nuclei
,”
Epidemiol. Infect.
44
,
471
479
(
1946
).
56.
ASHRAE
,
ANSI/ASHRAE Standard 62.1–2019, Ventilation and Acceptable Indoor Air Quality
(
ASHRAE
,
2019
).
57.
Y.
Li
,
P.
Cheng
, and
W.
Jia
, “
Poor ventilation worsens short-range airborne transmission of respiratory infection
,”
Indoor Air
32
,
e12946
(
2022
).
58.
A.
Kızılersü
,
M.
Kreer
, and
A. W.
Thomas
, “
The Weibull distribution
,”
Significance
15
,
10
11
(
2018
).
59.
S. B.
Kwon
,
J.
Park
,
J.
Jang
,
Y.
Cho
,
D. S.
Park
,
C.
Kim
,
G. N.
Bae
, and
A.
Jang
, “
Study on the initial velocity distribution of exhaled air from coughing and speaking
,”
Chemosphere
87
,
1260
1264
(
2012
).
60.
N.
Zhu
,
D.
Zhang
,
W.
Wang
,
X.
Li
,
B.
Yang
,
J.
Song
,
X.
Zhao
,
B.
Huang
,
W.
Shi
,
R.
Lu
,
P.
Niu
,
F.
Zhan
,
X.
Ma
,
D.
Wang
,
W.
Xu
,
G.
Wu
,
G. F.
Gao
,
W.
Tan
,
C. N. C.
, and
Investigating, R. T.
, “
A novel coronavirus from patients with pneumonia in China, 2019
,”
N Engl. J. Med.
382
,
727
733
(
2020
).
61.
Y. M.
Bar-On
,
A.
Flamholz
,
R.
Phillips
, and
R.
Milo
, “
SARS-CoV-2 (COVID-19) by the numbers
,”
eLife
9
,
e57309
(
2020
).
You do not currently have access to this content.