The study proposes a method for quantifying the progressive erosion in a 90° elbow pipe with dynamic mesh technology, analyzing its impact on erosion and flowing characteristics. The findings reveal that erosion depth and impact count are primarily concentrated in the midsection of the outer elbow, exhibiting elliptical and “V-shaped” distributions, respectively, with the highest values observed for a minimum particle diameter of 0.075 mm. The impact angle demonstrates a contraction-expansion trend, peaking at the contraction zone, while impact velocity is higher on the outer elbow. As particle size increases, erosion depth and impact count decrease, the range of impact angles broadens, and the maximum value shifts inward. Impact velocity declines overall, though localized high values persist. Over time, the depth and number of pits on the elbow wall increase. Maximum erosion depth is higher for small and medium particles, concentrated around 45°, whereas large particles cause maximum erosion near 60°. Material loss from the elbow increases linearly, but the rate of increase gradually diminishes. Large particles cause severe short-term material loss, while small particles contribute more over extended periods. Erosion-induced deformation causes abrupt changes in fluid velocity direction, intensifies vortex strength near the wall, shifts the high-pressure region on the outer elbow toward the deformed area, and expands the erosion region on the inner elbow. Furthermore, impact count is the most critical parameter influencing erosion depth. The findings offer technical support for quantitatively predicting sediment-induced erosion and provides guidance for ensuring reliable pipeline operation.

1.
B.
Hong
,
X.
Li
,
Y.
Li
,
Y.
Li
,
Y.
Yu
,
Y.
Wang
,
J.
Gong
, and
D.
Ai
, “
Numerical simulation of elbow erosion in shale gas fields under gas-solid two-phase flow
,”
Energies
14
(
13
),
3804
(
2021
).
2.
X.
Zhao
,
X.
Cao
,
Z.
Xie
,
H.
Cao
,
C.
Wu
, and
J.
Bian
, “
Numerical study on the particle erosion of elbows mounted in series in the gas-solid flow
,”
J. Nat. Gas Sci. Eng.
99
,
104423
(
2022
).
3.
W.
Yu
,
P.
Fede
,
E.
Climent
, and
S.
Sanders
, “
Multi-fluid approach for the numerical prediction of wall erosion in an elbow
,”
Powder Technol.
354
,
561
583
(
2019
).
4.
S.
Dai
,
J.
Fan
,
J.
Li
,
C.
Fan
, and
S.
Yang
, “
Study on the erosion performance of high-pressure double elbow based on experiment and numerical simulation
,”
Tribol. Int.
187
,
108671
(
2023
).
5.
Q. H.
Mazumder
,
K.
Hassn
,
A.
Kamble
, and
V. T.
Nallamothu
, “
Characterization of particulated flow induced erosion in elbow geometry
,”
Exp. Comput. Multipase Flow
3
(
2
),
100
107
(
2021
).
6.
G.
Haider
,
M.
Othayq
,
J.
Zhang
,
R.
Vieira
, and
S.
Shirazi
, “
Effect of particle size on erosion measurements and predictions in annular flow for an elbow
,”
Wear
476
,
203579
(
2021
).
7.
X.
Sun
and
X.
Cao
, “
Impact of inter-particle collision on elbow erosion based on DSMC-CFD method
,”
Pet. Sci.
18
(
3
),
909
922
(
2021
).
8.
T. A.
Sedrez
and
S. A.
Shirazi
, “
Erosion evaluation of elbows in series with different configurations
,”
Wear
476
,
203683
(
2021
).
9.
R.
Khan
,
H. H.
Ya
,
I.
Shah
,
U. M.
Niazi
,
B. A.
Ahmed
,
M.
Irfan
,
A.
Glowacz
,
Z.
Pilch
,
F.
Brumercik
, and
M.
Azeem
, “
Influence of elbow angle on erosion-corrosion of 1018 steel for gas–liquid–solid three phase flow
,”
Materials
15
(
10
),
3721
(
2022
).
10.
Q.
Wang
,
Q.
Huang
,
N.
Wang
,
Y.
Wen
,
X.
Ba
,
X.
Sun
,
J.
Zhang
,
S.
Karimi
, and
S. A.
Shirazi
, “
An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series
,”
Eng. Failure Anal.
130
,
105779
(
2021
).
11.
Z.
Xie
,
X.
Cao
,
J.
Zhang
,
X.
Sun
,
C.
Fu
, and
C.
Wu
, “
Study of erosion behavior in elbows mounted in series using computational fluid dynamics method
,”
J. Energy Resour.-ASME
142
(
11
),
113001
(
2020
).
12.
A.
Asgharpour
,
P.
Zahedi
,
H.
Arabnejad Khanouki
,
S. A.
Shirazi
, and
B. S.
McLaury
, “
Experimental investigation of solid particle erosion in successive elbows in gas dominated flows
,”
J. Fluid. Eng.
142
(
6
),
061402
(
2020
).
13.
F.
Xiao
,
M.
Luo
,
S.
Kuang
,
M.
Zhou
,
J.
Jing
,
J.
Li
,
R.
Lin
, and
J.
An
, “
Numerical investigation of elbow erosion in the conveying of dry and wet particles
,”
Powder Technol.
393
,
265
279
(
2021
).
14.
C. A. R.
Duarte
,
F. J.
de Souza
,
D. N.
Venturi
, and
M.
Sommerfeld
, “
A numerical assessment of two geometries for reducing elbow erosion
,”
Particuology
49
,
117
133
(
2020
).
15.
H.
Zhou
,
Y.
Zhang
,
Y.
Bai
,
H.
Zhao
,
Y.
Lei
,
K.
Zhu
, and
X.
Ding
, “
Study on reducing elbow erosion with swirling flow
,”
Colloids Surf., A
630
,
127537
(
2021
).
16.
S. S.
Kolla
,
A.
Asgharpour
,
S. A.
Shirazi
, and
G.
Silva
, “
Erosion testing and modeling of a triangular elbow as compared to a circular elbow
,” in
Proceedings of the Fluids Engineering Division Summer Meeting
(
American Society of Mechanical Engineers
2020
).
17.
R.
Li
,
Z.
Sun
,
A.
Li
,
Y.
Li
, and
Z.
Wang
, “
Design optimization of hemispherical protrusion for mitigating elbow erosion via CFD-DPM
,”
Powder Technol.
398
,
117128
(
2022
).
18.
X.
Zhao
,
X.
Cao
,
H.
Cao
,
J.
Zhang
,
J.
Zhang
,
W.
Peng
, and
J.
Bian
, “
Numerical study of elbow erosion due to sand particles under annular flow considering liquid entrainment
,”
Particuology
76
,
122
139
(
2023
).
19.
M.
Zolfagharnasab
,
M.
Salimi
,
H.
Zolfagharnasab
,
H.
Alimoradi
,
M.
Shams
, and
C.
Aghanajafi
, “
A novel numerical investigation of erosion wear over various 90-degree elbow duct sections
,”
Powder Technol.
380
,
1
17
(
2021
).
20.
X.
Chen
,
B. S.
McLaury
, and
S. A.
Shirazi
, “
Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees
,”
Comput. Fluids
33
(
10
),
1251
1272
(
2004
).
21.
X.
Dou
,
W.
Xiang
,
B.
Li
,
M.
Ju
,
A.
Li
,
D.
Zhang
, and
Y.
Li
, “
CFD-DPM modelling of solid particle erosion on weld reinforcement height in liquid-solid high shear flows
,”
Powder Technol.
427
,
118773
(
2023
).
22.
Z.
Shi
,
Z.
Wang
,
D.
Ai
,
Z.
Sun
,
Y.
Peng
,
S.
Sun
, and
S.
Hu
, “
Study of erosion prediction of fluid–solid flow in three-way pipe via CFD-DPM
,”
Arab. J. Sci. Eng.
2025
,
1
18
.
23.
G.
Grant
and
W.
Tabakoff
, “
Erosion prediction in turbomachinery resulting from environmental solid particles
,”
J. Aircr.
12
(
5
),
471
478
(
1975
).
24.
Y. I.
Oka
,
K.
Okamura
, and
T.
Yoshida
, “
Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation
,”
Wear
259
(
1–6
),
95
101
(
2005
).
25.
Y.
Oka
and
T.
Yoshida
, “
Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage
,”
Wear
259
(
1–6
),
102
109
(
2005
).
26.
M.
Shafa
,
E.
Hajidavalloo
,
A.
Riasi
, and
A. H.
Sajadinia
, “
Optimal condition of simultaneous water and air injection in a Francis turbine in order to reduce vortices using experimental and numerical methods
,”
Energy Convers. Manage.
291
,
117305
(
2023
).
27.
B.
Altintas
,
E.
Ayli
,
K.
Celebioglu
,
S.
Aradag
, and
Y.
Tascioglu
, “
Mitigating cavitation effects on Francis turbine performance: A two-phase flow analysis
,”
Ocean Eng.
317
,
120018
(
2025
).
28.
P.
Guo
,
Y.
Li
, and
L.
Sun
, “
Dynamic behavior and energy dissipation analysis of pump turbine in unstable S characteristic zone
,”
J. Energy Storage
102
,
114275
(
2024
).
29.
Y.
Li
,
L.
Sun
,
P.
Guo
, and
Z.
Xu
, “
Dynamic and flow instability analysis during runaway process for a pump turbine
,”
Eng. Appl. Comput. Fluid
18
(
1
),
2427288
(
2024
).
30.
Q.
Liu
,
W.
Miao
,
Q.
Ye
, and
C.
Li
, “
Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine
,”
Renewable Energy
185
,
1124
1138
(
2022
).
31.
V.
Kolář
and
J.
Šístek
, “
Consequences of the close relation between Rortex and swirling strength
,”
Phys. Fluids
32
(
9
),
091702
(
2020
).
32.
L.
Sun
,
P.
Guo
, and
L.
Wu
, “
Numerical investigation of alleviation of undesirable effect of inter-blade vortex with air admission for a low-head Francis turbine
,”
J. Hydrodyn.
32
,
1151
1164
(
2020
).
33.
J.
Hauke
and
T.
Kossowski
, “
Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data
,”
Quaestiones Geographicae
30
(
2
),
87
93
(
2011
).
34.
L.
Zhang
and
L.
Wang
, “
Optimization of site investigation program for reliability assessment of undrained slope using Spearman rank correlation coefficient
,”
Comput. Geotech.
155
,
105208
(
2023
).
You do not currently have access to this content.