Of the many rheological material functions, the two most important are (i) steady shear flow and (ii) oscillatory shear flow. Another canonical rheological material function is constructed by superposing, in parallel, at small-amplitude, romanette (ii) upon (i). To this, complex fluids, including polymeric liquids, will respond with a complex viscosity that depends on both the steady shear rate of (i) and the angular frequency of (ii). Our recent work [Phys. Fluids 36(8), 083121 (2024)] uncovers the macromolecular origins of this complex viscosity dependence using rotarance theory. By rotarance, we mean at least involving the hydrodynamic resistances of the macromolecules to reorientation. However, to parallel superposition, complex fluids also respond with two normal stress differences. We devote this paper to uncovering the macromolecular origins of both of these normal stress differences, using rotarance theory. For both the first and second normal stress differences, we arrive at analytical expressions for the complex normal stress coefficients. We find that these increase with the lopsidedness of the macromolecular structure, be this lopsidedness prolate or oblate. We further find that, whereas the real and minus imaginary parts of the parts of the complex components of the primary normal stress difference are signed identically, the real and minus imaginary parts of the corresponding secondary are signed oppositely.

1.
M. C.
Pak
,
A. J.
Giacomin
, and
M. A.
Kanso
, “
Stress relaxation following sudden cessation of steady shearing from polymer rotarance theory
,”
Phys. Fluids
36
(
7
),
073110
(
2024
).
2.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Macromolecular architecture and complex viscosity
,”
Phys. Fluids
,
31
(
8
),
087107
(
2019
). Editor's pick. Errata: Ganged in Ref. 8 of [3] below. In the caption to FIG. 1., “(rightmost)” should be “(leftmost)”, and “(leftmost)” should be “(rightmost)”.
3.
M. A.
Kanso
,
V.
Chaurasia
,
E.
Fried
, and
A. J.
Giacomin
, “
Peplomer bulb shape and coronavirus rotational diffusivity
,”
Phys. Fluids
33
(
3
),
033115
(
2021
).
4.
J. H.
Piette
,
A. J.
Giacomin
, and
M. A.
Kanso
, “
Complex viscosity of helical and doubly helical polymeric liquids from general rigid bead-rod theory
,”
Phys. Fluids
31
(
11
),
111904
(
2019
). Feature article. Errata: In the captions to FIGS. 10 and 12, “prolate” should be “oblate”. Right side of Eq. (4) should be [ri1,ri2,ri3]–R. Before Eq. (35), “Eq. (40) of Ref. 7” should be “Eq. (44) of Ref. 7”.
5.
K.
El Haddad
,
C.
Aumnate
,
C.
Saengow
,
M. A.
Kanso
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Complex viscosity of graphene suspensions
,”
Phys. Fluids
33
(
9
),
093109
(
2021
).
6.
S. J.
Coombs
,
M. A.
Kanso
,
K. E.
Haddad
, and
A. J.
Giacomin
, “
Complex viscosity of star-branched macromolecules from analytical general rigid bead-rod theory
,”
Phys. Fluids
33
(
9
),
093109
(
2021
). Errata: In the captions to FIGS. 6–7, 14–17 and 20–22, “/η0(λω)” should be “(λω)/η0”; In the captions to FIGS. 8–9, the equations for θ1 should be θ1 =  12(π−Θt); In TABLE III., “Bead position for irregular tetrahedral, spherical coordinates” should be “Branch angle, first branch”; “NB(NB + 1)(2NB + 1)” must be multiplied by “ 16” throughout. Feature Article. Cover Article.
7.
D.
Singhal
,
M. A.
Kanso
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Complex viscosity of poly[n]catenanes including Olympiadanes
,”
Phys. Fluids
34
(
3
),
033112
(
2022
).
8.
R.
Chakraborty
,
D.
Singhal
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
Macromolecular complex viscosity from space-filling equilibrium structure, special topic: rheology testing and analysis
,”
Phys. Fluids
34
(
9
),
093109
(
2022
).
9.
M. C.
Pak
,
R.
Chakraborty
,
M. A.
Kanso
,
K.-I.
Kim
, and
A. J.
Giacomin
, “
Hydrodynamic interaction within star-branched macromolecules
,”
Phys. Fluids
34
,
093114
(
2022
). Editor's pick. Erratum: After Eq. (9), “3.36×104” should be “3.36×10−4”.
10.
M. A.
Kanso
,
V.
Calabrese
,
A. Q.
Shen
,
M. C.
Pak
, and
A. J.
Giacomin
, “
Bacteriophage Pf1 complex viscosity
,”
Phys. Fluids
35
(
7
),
073107
(
2023
).
11.
M. A.
Kanso
,
M. C.
Pak
, and
A. J.
Giacomin
, “
Cox-Merz rules from general rigid bead-rod theory
,”
Phys. Fluids
35
(
9
),
093112
(
2023
).
12.
M. A.
Kanso
and
A. J.
Giacomin
, “
van Gurp-Palmen relations for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
3
),
033101
(
2020
). Erratum: In Eq. (44), “I3 > I1” should be “I3 < I1”.
13.
S. J.
Coombs
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
Cole-Cole relation for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
9
),
093106
(
2020
).
14.
M. C.
Pak
,
H. J.
Kang
, and
A. J.
Giacomin
, “
Superposition of steady shear flow upon orthogonal small-amplitude oscillation from rotarance theory
,”
Phys. Fluids
36
(
10
),
103118
(
2024
).
15.
M. A.
Kanso
, “
Coronavirus hydrodynamics
,” PhD thesis,
Polymers Research Group, Chemical Engineering Department Queen's University
,
2022
.
16.
M. A.
Kanso
and
A. J.
Giacomin
, “
General rigid bead-rod macromolecular theory
,” in
Recent Advances in Rheology: Theory, Biorheology, Suspension and Interfacial Rheology
, edited by
Daniel De
Kee
and
Arun
Ramachandran
, 1st ed. (
AIP Publishing
,
Melville, NY
,
2022
), Chap. 2, pp.
2
17
. Errata: Below Eq. (2.78), “…increases with N” should be “…increases with N3”. Above Eq. (2.80), “(77)” should be “(2.77)”.
17.
R. B.
Bird
,
H. R.
Warner
, Jr.
, and
D. C.
Evans
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,”
Adv. Polym. Sci.
8
,
1
90
(
1971
).
18.
M. C.
Pak
and
A. J.
Giacomin
, “
Parallel superposition of small-amplitude oscillatory shear flow upon steady shear flow from rotarance theory
,”
Phys. Fluids
36
(
8
),
083121
(
2024
).
19.
M. C.
Pak
,
A. J.
Giacomin
,
M. A.
Kanso
, and
H. C.
Pak
, “
Large-amplitude oscillatory shear flow from general rigid bead-rod theory
,”
Phys. Fluids
35
(
8
),
083120
(
2023
).
20.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, Vol.
2
, 2nd ed. (
Wiley
,
New York
,
1987
).
21.
A. J.
Giacomin
,
S. J.
Coombs
,
M. C.
Pak
, and
K. I.
Kim
, “
General rigid bead-rod theory for steady-shear flow
,”
Phys. Fluids
35
(
8
),
083111
(
2023
).
22.
H. C.
Booij
, “
Influence of superimposed steady shear flow on the dynamic properties of non-Newtonian fluids: III. Measurements on oscillatory normal stress components
,”
Rheol. Acta
7
,
202
209
(
1968
).
23.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
New York
,
1980
).
24.
A. S.
Lodge
,
Elastic Liquids: An Introductory Vector Treatment
(
Academic Press
,
London
,
1964
).
25.
A. S.
Lodge
,
Body Tensor Fields in Continuum Mechanics: With Applications to Polymer Rheology
(
Academic Press
,
New York
,
1974
).
26.
O.
Hassager
, “
Kinetic theory and rheology of bead-rod models for macromolecular solutions. II. Linear unsteady flow properties
,”
J. Chem. Phys.
60
(
10
),
4001
4008
(
1974
).
27.
M. C.
Pak
,
A. J.
Giacomin
, and
M. A.
Kanso
, “
Steady elongational flow from rotarance theory
,”
Phys. Fluids
35
(
10
),
103116
(
2023
).
You do not currently have access to this content.