Ricochet motion near water surface is a common phenomenon in ocean engineering and plays a pivotal role in the design of innovative conceptual trans-media vehicles. In this study, the adaptive particle refinement smoothed particle hydrodynamics method, characterized by multi-resolution particle distributions, is employed to investigate the ricochet motion of a vehicle equipped with a wedge-shaped slider. The convergence and accuracy of the method are verified through a series of case studies, encompassing two two-dimensional (2D) cases and one three-dimensional (3D) case. In addition, a multi-cell linked list method is introduced to enhance the efficiency of nearest neighbor particle search and its efficiency is demonstrated, particularly in the context of 3D simulations. Furthermore, the dynamic and kinematic characteristics of the ricochet motion are analyzed, and the effects of the slider position, initial inclination angle, and initial velocity angle on various parameters, such as cavity formation, load distributions and kinematics, are systematically studied. The findings reveal that the ricochet motion is highly sensitive to the slider position, and stable ricochet motion can be achieved by adjusting the initial inclination angles in different scenarios. These insights provide valuable guidance for the design of trans-media vehicles with a wedge-shaped slider.

1.
T. T.
Truscott
,
B. P.
Epps
, and
J.
Belden
, “
Water entry of projectiles
,”
Annu. Rev. Fluid Mech.
46
,
355
378
(
2014
).
2.
B. S.
Prasad
,
G. R. K.
Sastry
, and
H.
Das
, “
A comprehensive review study on multiphase analysis of water entry bodies
,”
Ocean Eng.
292
,
116579
(
2024
).
3.
G.
Birkhoff
,
G. D.
Birkhoff
,
W. E.
Bleick
,
E. H.
Handler
,
F. D.
Murnaghan
, and
T. L.
Smith
, “
Ricochet off water
,”
AMP Memo
42
,
4M
(
1944
).
4.
W.
Johnson
and
S.
Reid
, “
Ricochet of spheres off water
,”
J. Mech. Eng. Sci.
17
,
71
81
(
1975
).
5.
I.
Hutchings
, “
The ricochet of spheres and cylinders from the surface of water
,”
Int. J. Mech. Sci.
18
,
243
247
(
1976
).
6.
L.
Bocquet
, “
The physics of stone skipping
,”
Am. J. Phys.
71
,
150
150
(
2003
).
7.
E.
Richardson
, “
The impact of a solid on a liquid surface
,”
Proc. Phys. Soc.
61
,
352
(
1948
).
8.
D.
Shlien
, “
Unexpected ricochet of spheres off water
,”
Exp. Fluids
17
,
267
271
(
1994
).
9.
C.
Clanet
,
F.
Hersen
, and
L.
Bocquet
, “
Secrets of successful stone-skipping
,”
Nature
427
,
29
29
(
2004
).
10.
L.
Rosellini
,
F.
Hersen
,
C.
Clanet
, and
L.
Bocquet
, “
Skipping stones
,”
J. Fluid Mech.
543
,
137
146
(
2005
).
11.
A.
Iafrati
, “
Experimental investigation of the water entry of a rectangular plate at high horizontal velocity
,”
J. Fluid Mech.
799
,
637
672
(
2016
).
12.
J.
Tang
,
K.
Zhao
,
H.
Chen
, and
D.
Cao
, “
Trajectory and attitude study of a skipping stone
,”
Phys. Fluids
33
,
043316
(
2021
).
13.
T. T.
Truscott
,
M. M.
Wright
,
K. R.
Langley
, and
J.
Belden
, “
Holy balls! Balls that walk on water
,”
Phys. Fluids
24
,
091103
(
2012
).
14.
J.
Belden
,
R. C.
Hurd
,
M. A.
Jandron
,
A. F.
Bower
, and
T. T.
Truscott
, “
Elastic spheres can walk on water
,”
Nat. Commun.
7
,
10551
(
2016
).
15.
R. C.
Hurd
,
J.
Belden
,
A. F.
Bower
,
S.
Holekamp
,
M. A.
Jandron
, and
T. T.
Truscott
, “
Water walking as a new mode of free surface skipping
,”
Sci. Rep.
9
,
6042
(
2019
).
16.
H.-W.
Tsai
,
H.-C.
Tsai
,
W.-F.
Wu
, and
C.-L.
Lai
, “
Experimental results and mathematical formulation of non-spinning stone-skipping process
,”
Sci. Rep.
12
,
16372
(
2022
).
17.
H.-W.
Tsai
,
W.-F.
Wu
, and
C.-L.
Lai
, “
An experimental study of non-spinning stone-skipping process
,”
Exp. Therm. Fluid Sci.
123
,
110319
(
2021
).
18.
X.
Lyu
,
H.
Yun
, and
Z.
Wei
, “
Experimental study of a sphere bouncing on the water
,”
J. Mar. Sci. Appl.
20
,
714
722
(
2021
).
19.
Z.
Guo
,
X.
Yan
,
S.
Sun
,
R.
Liu
,
M.
Zhu
,
B.
Huo
,
L.
Zhao
, and
K.
Fang
, “
Experimental study on the high-speed water entry of cylinders at shallow angles
,”
Phys. Fluids
36
,
104123
(
2024
).
20.
M.-S.
Park
,
Y.-R.
Jung
, and
W.-G.
Park
, “
Numerical study of impact force and ricochet behavior of high speed water-entry bodies
,”
Comput. Fluids
32
,
939
951
(
2003
).
21.
V.
Murali
and
S. D.
Naik
, “
Skipping stone to projectile ricochet
,”
IREMOS
8
,
104
110
(
2015
).
22.
V.-T.
Nguyen
,
T.-H.
Phan
, and
W.-G.
Park
, “
Modeling and numerical simulation of ricochet and penetration of water entry bodies using an efficient free surface model
,”
Int. J. Mech. Sci.
182
,
105726
(
2020
).
23.
C.
Li
,
C.
Wang
,
Y.
Wei
, and
W.
Xia
, “
Three-dimensional numerical simulation of cavity dynamics of a stone with different spinning velocities
,”
Int. J. Multiph. Flow
129
,
103339
(
2020
).
24.
C.
Li
,
C.
Wang
,
Y.
Wei
,
W.
Xia
, and
C.
Zhang
, “
Hydrodynamic force and attitude angle characteristics of a spinning stone impacting a free surface
,”
Phys. Fluids
33
,
123309
(
2021
).
25.
C.-H.
Li
,
C.
Wang
, and
Y.-J.
Wei
, “
Numerical and theoretical investigation on three-dimensional trajectory characteristics of skipping stones
,”
Acta Mech. Sin.
38
,
321485
(
2022
).
26.
S-i
Nagahiro
and
Y.
Hayakawa
, “
Theoretical and numerical approach to “magic angle” of stone skipping
,”
Phys. Rev. Lett.
94
,
174501
(
2005
).
27.
R.
Yan
and
J.
Monaghan
, “
Sph simulation of skipping stones
,”
Eur. J. Mech.-B/Fluids
61
,
61
71
(
2017
).
28.
J.
Li
,
F.
Wang
,
M.
Cao
,
L.
Yao
,
B.
Wu
,
X.
Su
,
J-h
Han
,
D.
Cao
, and
Y.
Tian
, “
Attitude motion and nonlinear free-surface deformation of stone-skipping over shallow water
,”
Phys. Fluids
36
,
126105
(
2024
).
29.
H.
Cheng
,
F.
Ming
,
P.
Sun
,
P.
Wang
, and
A.
Zhang
, “
Towards the modeling of the ditching of a ground-effect wing ship within the framework of the SPH method
,”
Appl. Ocean Res.
82
,
370
384
(
2019
).
30.
B.
Guo
,
P.
Liu
,
Q.
Qu
, and
J.
Wang
, “
Effect of pitch angle on initial stage of a transport airplane ditching
,”
Chin. J. Aeronaut.
26
,
17
26
(
2013
).
31.
T.
Xiao
,
N.
Qin
,
Z.
Lu
,
X.
Sun
,
M.
Tong
, and
Z.
Wang
, “
Development of a smoothed particle hydrodynamics method and its application to aircraft ditching simulations
,”
Aerosp. Sci. Technol.
66
,
28
43
(
2017
).
32.
W.
Shi
,
Y.
Shen
,
J.
Chen
, and
Y.
Jiang
, “
SPH simulations on water entry characteristics of a re-entry capsule
,”
Eng. Anal. Boundary Elem.
119
,
257
268
(
2020
).
33.
T.
Xiao
,
Z.
Lu
, and
S.
Deng
, “
Effect of initial pitching angle on helicopter ditching characteristics using smoothed-particle-hydrodynamics method
,”
J. Aircraft
58
,
167
181
(
2021
).
34.
N.
Ye
,
T.
Long
,
J.
Meng
,
R.
Shi
, and
B.
ZHANG
, “
Surrogate-assisted optimization for anti-ship missile body configuration considering high-velocity water touching
,”
Chin. J. Aeronaut.
36
,
268
281
(
2023
).
35.
J.
Luo
,
J.
Meng
,
N.
Yu
, and
T.
Long
, “
Configuration optimization of a skippable anti-ship missile considering initial kinematic parameters
,”
AIAA J.
62
,
1094
1104
(
2024
).
36.
W.
Ma
,
H.
Lou
,
X.
Li
,
P.
Wang
,
L.
Wang
,
W.
Niu
,
M.
Yang
,
S.
Fa
,
J.
Song
, and
S.
Yang
, “
Study on water entry characteristics of an air-droppable underwater glider in hydrostatic water
,”
Phys. Fluids
37
,
017103
(
2025
).
37.
M.
Liu
and
G.
Liu
, “
Smoothed particle hydrodynamics (SPH): An overview and recent developments
,”
Arch. Comput. Methods Eng.
17
,
25
76
(
2010
).
38.
P.-N.
Sun
,
A.
Colagrossi
,
S.
Marrone
, and
A.-M.
Zhang
, “
The δ plus-SPH model: Simple procedures for a further improvement of the SPH scheme
,”
Comput. Methods Appl. Mech. Eng.
315
,
25
49
(
2017
).
39.
K.
Gong
,
H.
Liu
, and
B-l
Wang
, “
Water entry of a wedge based on SPH model with an improved boundary treatment
,”
J. Hydrodyn.
21
,
750
757
(
2009
).
40.
P.
Sun
,
A.-M.
Zhang
,
S.
Marrone
, and
F.
Ming
, “
An accurate and efficient SPH modeling of the water entry of circular cylinders
,”
Appl. Ocean Res.
72
,
60
75
(
2018
).
41.
C.
Zhang
,
Y-j
Zhu
,
D.
Wu
,
N. A.
Adams
, and
X.
Hu
, “
Smoothed particle hydrodynamics: Methodology development and recent achievement
,”
J. Hydrodyn.
34
,
767
805
(
2022
).
42.
Z.-X.
Zhao
,
H.
Liu
, and
Z.-X.
Gong
, “
A high-efficiency smoothed particle hydrodynamics model with multi-cell linked list and adaptive particle refinement for two-phase flows
,”
Phys. Fluids
33
,
064102
(
2021
).
43.
Z.-X.
Zhao
,
G.
Bilotta
,
Q.-E.
Yuan
,
Z.-X.
Gong
, and
H.
Liu
, “
Multi-GPU multi-resolution SPH framework towards massive hydrodynamics simulations and its applications in high-speed water entry
,”
J. Comput. Phys.
490
,
112339
(
2023
).
44.
X.
Yang
,
S.
Feng
,
J.
Wu
,
G.
Zhang
,
G.
Liang
, and
Z.
Zhang
, “
Study of the water entry and exit problems by coupling the APR and PST within SPH
,”
Appl. Ocean Res.
139
,
103712
(
2023
).
45.
L.
Chiron
,
G.
Oger
,
M.
De Leffe
, and
D.
Le Touzé
, “
Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations
,”
J. Comput. Phys.
354
,
552
575
(
2018
).
46.
S.-L.
Chuang
, “
Experiments on slamming of wedge-shaped bodies
,”
J. Ship Res.
11
,
190
198
(
1967
).
47.
I.
Hammani
, “
Improvement of the SPH method for multiphase flows application to the emergency water landing of aircrafts: Application to the emergency water landing of aircrafts
,” Ph.D. thesis (
École Centrale de Nantes
,
2020
).
48.
L.
Xu
,
A.
Troesch
, and
R.
Peterson
, “
Asymmetric hydrodynamic impact and dynamic response of vessels
,”
J. Offshore Mech. Arct. Eng.
121
,
83
89
(
1999
).
49.
L.
Xu
, “
A theory for asymmetrical vessel impact and steady planing
,” Ph.D. thesis (
University of Michigan
,
1998
).
50.
W.-T.
Liu
,
A.-M.
Zhang
,
X.-H.
Miao
,
F.-R.
Ming
, and
Y.-L.
Liu
, “
Investigation of hydrodynamics of water impact and tail slamming of high-speed water entry with a novel immersed boundary method
,”
J. Fluid Mech.
958
,
A42
(
2023
).
51.
X.-J.
Liu
,
W.-T.
Liu
,
F.-R.
Ming
,
Y.-L.
Liu
, and
A.-M.
Zhang
, “
Investigation of free surface effect on the cavity expansion and contraction in high-speed water entry
,”
J. Fluid Mech.
988
,
A53
(
2024
).
You do not currently have access to this content.