Understanding the flow dynamics within a thin wall film during droplet impact spreading is crucial. A key open question concerns the dominant forces governing the temporal decay of stagnation point flow strength. This study employs direct numerical simulations to investigate the flow field across a range of viscosities and different wall boundary conditions. Results demonstrate that viscous forces, particularly wall friction, significantly influence the temporal evolution of the stagnation point flow, even at high Reynolds numbers [ O(105)], causing deviation from inviscid theory and adherence to an exponential decay. Furthermore, a comparison with an analytical boundary layer model reveals that pressure, gravity, and surface tension forces are negligible during spreading.

1.
R.
Xu
,
G.
Wang
, and
P.
Jiang
, “
Spray cooling on enhanced surfaces: A review of the progress and mechanisms
,”
J. Electron. Packag.
144
,
010802
(
2022
).
2.
G. E.
Cossali
,
A.
Coghe
, and
M.
Marengo
, “
The impact of a single drop on a wetted solid surface
,”
Exp. Fluids
22
,
463
472
(
1997
).
3.
G.
Lamanna
,
A.
Geppert
,
R.
Bernard
, and
B.
Weigand
, “
Drop impact onto wetted walls: An unsteady analytical solution for modelling crown spreading
,”
J. Fluid Mech.
938
,
A34
(
2022
).
4.
A. K.
Geppert
,
J. L.
Stober
,
J.
Steigerwald
,
K.
Schulte
,
S.
Tonini
, and
G.
Lamanna
, “
Analyzing the early impact dynamics of single droplets impacting onto wetted surfaces
,”
Phys. Fluids
36
,
012005
(
2024
).
5.
J.
Eggers
,
M. A.
Fontelos
,
C.
Josserand
, and
S.
Zaleski
, “
Drop dynamics after impact on a solid wall: Theory and simulations
,”
Phys. Fluids
22
,
062101
(
2010
).
6.
G.
Lagubeau
,
M. A.
Fontelos
,
C.
Josserand
,
A.
Maurel
,
V.
Pagneux
, and
P.
Petitjeans
, “
Spreading dynamics of drop impacts
,”
J. Fluid Mech.
713
,
50
60
(
2012
).
7.
A. L.
Yarin
and
D. A.
Weiss
, “
Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity
,”
J. Fluid Mech.
283
,
141
173
(
1995
).
8.
M. F.
Trujillo
and
C. F.
Lee
, “
Modeling crown formation due to the splashing of a droplet
,”
Phys. Fluids
13
,
2503
2516
(
2001
).
9.
I. V.
Roisman
and
C.
Tropea
, “
Impact of a drop onto a wetted wall: Description of crown formation and propagation
,”
J. Fluid Mech.
472
,
373
397
(
2002
).
10.
I. V.
Roisman
,
E.
Berberović
, and
C.
Tropea
, “
Inertia dominated drop collisions. I. On the universal flow in the lamella
,”
Phys. Fluids
21
,
052103
(
2009
).
11.
N. P.
van Hinsberg
,
M.
Budakli
,
S.
Göhler
,
E.
Berberović
,
I. V.
Roisman
,
T.
Gambaryan-Roisman
,
C.
Tropea
, and
P.
Stephan
, “
Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses
,”
J. Colloid Interface Sci.
350
,
336
343
(
2010
).
12.
X.
Gao
and
R.
Li
, “
Impact of a single drop on a flowing liquid film
,”
Phys. Rev. E
92
,
053005
(
2015
).
13.
S.
Schubert
,
J.
Steigerwald
,
A. K.
Geppert
,
B.
Weigand
, and
G.
Lamanna
, “
Micro-PIV study on the influence of viscosity on the dynamics of droplet impact onto a thin film
,”
Exp. Fluids
65
,
69
(
2024
).
14.
E.
Villermaux
and
B.
Bossa
, “
Drop fragmentation on impact
,”
J. Fluid Mech.
668
,
412
435
(
2011
).
15.
M.
Pasandideh-Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
659
(
1996
).
16.
I. V.
Roisman
, “
Inertia dominated drop collisions. II. An analytical solution of the navier–stokes equations for a spreading viscous film
,”
Phys. Fluids
21
,
052104
(
2009
).
17.
H.
Lastakowski
,
F.
Boyer
,
A.-L.
Biance
,
C.
Pirat
, and
C.
Ybert
, “
Bridging local to global dynamics of drop impact onto solid substrates
,”
J. Fluid Mech.
747
,
103
118
(
2014
).
18.
B.
Lafaurie
,
C.
Nardone
,
R.
Scardovelli
,
S.
Zaleski
, and
G.
Zanetti
, “
Modelling merging and fragmentation in multiphase flows with SURFER
,”
J. Comput. Phys.
113
,
134
147
(
1994
).
19.
C.
Hirt
and
B.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
20.
K.
Eisenschmidt
,
M.
Ertl
,
H.
Gomaa
,
C.
Kieffer-Roth
,
C.
Meister
,
P.
Rauschenberger
,
M.
Reitzle
,
K.
Schlottke
, and
B.
Weigand
, “
Direct numerical simulations for multiphase flows: An overview of the multiphase code FS3D
,”
Appl. Math. Comput.
272
,
508
517
(
2016
).
21.
M.
Rieber
and
A.
Frohn
, “
A numerical study on the mechanism of splashing
,”
Int. J. Heat Fluid Flow
20
,
455
461
(
1999
).
22.
S.
Fest-Santini
,
J.
Steigerwald
,
M.
Santini
,
G.
Cossali
, and
B.
Weigand
, “
Multiple drops impact onto a liquid film: Direct numerical simulation and experimental validation
,”
Comput. Fluids
214
,
104761
(
2021
).
23.
V.
Falkner
and
W.
Skan
, “
Some approximate solutions of the boundary layer equations
,” A.R.C Reports and Memoranda (
1930
).
24.
F.
Homann
, “
Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel
,”
Z. Angew. Math. Mech.
16
,
153
164
(
1936
).
You do not currently have access to this content.