Streaming currents, which convert mechanical energy into electrical current, typically generate minute currents so that various methods for enhancing these currents have been extensively studied. We have applied a highly charged nanoporous coating to the walls of microchannels for this purpose. However, this leads to a nonlinearity between flow rates and resulting currents, largely deviating from the classical theory. We examined that the nonlinearity intensifies with increasing layer thickness or decreasing electrolyte concentration. Further investigations unveiled that the nonlinearity is resulting from the non-negligible conduction current within the nanoporous layer that flows counter to the applied pressure. Finally, a scaling analysis quantifies the layer's physicochemical parameters on this nonlinearity. These insights guide the design of efficient electrokinetic systems utilizing the streaming current, balancing the need for high current throughput with minimal nonlinearity.

1.
A. C.
Barbati
and
B. J.
Kirby
, “
Soft diffuse interfaces in electrokinetics–theory and experiment for transport in charged diffuse layers
,”
Soft Matter
8
,
10598
(
2012
).
2.
C.
Yang
and
D.
Li
, “
Analysis of electrokinetic effects on the liquid flow in rectangular microchannels
,”
Colloids Surf., A
143
,
339
(
1998
).
3.
B.
Fan
,
A.
Bhattacharya
, and
P.
Bandaru
, “
Enhanced voltage generation through electrolyte flow on liquid-filled surfaces
,”
Nat. Commun.
9
,
4050
(
2018
).
4.
R.
Zhang
,
S.
Wang
,
M.-H.
Yeh
,
C.
Pan
,
L.
Lin
,
R.
Yu
,
Y.
Zhang
,
L.
Zheng
,
Z.
Jiao
, and
Z. L.
Wang
, “
A streaming potential/current-based microfluidic direct current generator for self-powered nanosystems
,”
Adv. Mater.
27
,
6482
(
2015
).
5.
F. H.
van der Heyden
,
D.
Stein
, and
C.
Dekker
, “
Streaming currents in a single nanofluidic channel
,”
Phys. Rev. Lett.
95
,
116104
(
2005
).
6.
D.
Erickson
,
D.
Li
, and
C.
Werner
, “
An improved method of determining the ζ-potential and surface conductance
,”
J. Colloid Interface Sci.
232
,
186
(
2000
).
7.
R.
Zimmermann
,
D.
Kuckling
,
M.
Kaufmann
,
C.
Werner
, and
J. F. L.
Duval
, “
Electrokinetics of a poly(N-isopropylacrylamid-co-carboxyacrylamid) soft thin film: Evidence of diffuse segment distribution in the swollen state
,”
Langmuir
26
,
18169
(
2010
).
8.
P.
Fievet
,
M.
Sbaı
,
A.
Szymczyk
, and
A.
Vidonne
, “
Determining the ζ-potential of plane membranes from tangential streaming potential measurements: Effect of the membrane body conductance
,”
J. Membr. Sci.
226
,
227
(
2003
).
9.
S.
Cavallaro
,
J.
Horak
,
P.
Hååg
,
D.
Gupta
,
C.
Stiller
,
S. S.
Sahu
,
A.
Görgens
,
H. K.
Gatty
,
K.
Viktorsson
,
S.
El Andaloussi
,
R.
Lewensohn
,
A. E.
Karlström
,
J.
Linnros
, and
A.
Dev
, “
Label-free surface protein profiling of extracellular vesicles by an electrokinetic sensor
,”
ACS Sens.
4
,
1399
(
2019
).
10.
J. H.
Masliyah
and
S.
Bhattacharjee
,
Electrokinetic and Colloid Transport Phenomena
(
Wiley
,
Hoboken, NJ
,
2006
).
11.
D.
Martins
,
V.
Chu
,
D.
Prazeres
, and
J.
Conde
, “
Streaming currents in microfluidics with integrated polarizable electrodes
,”
Microfluid. Nanofluid.
15,
361
(
2013
).
12.
L.
Zhou
,
D.
Shi
,
C.
Gong
,
Y.
Zhou
,
J.
Chen
, and
Z.
Li
, “
Enhancing ion transport in pressure-driven nanofluidic systems for energy harvesting
,”
Phys. Fluids
36
,
042012
(
2024
).
13.
M.
Munz
,
C. E.
Giusca
,
R. L.
Myers-Ward
,
D. K.
Gaskill
, and
O.
Kazakova
, “
Thickness-dependent hydrophobicity of epitaxial graphene
,”
ACS Nano
9
,
8401
(
2015
).
14.
X.
Zhou
,
Y.
Wang
,
X.
Li
,
P.
Sudersan
,
K.
Amann‐Winkel
,
K.
Koynov
,
Y.
Nagata
,
R.
Berger
, and
H. J.
Butt
, “
Thickness of nano‐scale poly (dimethylsiloxane) layers determines the motion of sliding water drops
,”
Adv. Mater.
36
,
2311470
(
2024
).
15.
S. H.
Chang
and
I. J.
Chung
, “
Effect of shear flow on polymer desorption and latex dispersion stability in the presence of adsorbed polymer
,”
Macromolecules
24
,
567
(
1991
).
16.
J.-G.
Weng
,
S.
Park
,
J. R.
Lukes
, and
C.-L.
Tien
, “
Molecular dynamics investigation of thickness effect on liquid films
,”
J. Chem. Phys.
113
,
5917
(
2000
).
17.
S.
Déon
,
P.
Fievet
, and
C. O.
Doubad
, “
Tangential streaming potential/current measurements for the characterization of composite membranes
,”
J. Membr. Sci.
423–424
,
413
(
2012
).
18.
A.
Efligenir
,
P.
Fievet
,
S.
Déon
, and
P.
Sauvade
, “
Tangential electrokinetic characterization of hollow fiber membranes: Effects of external solution on cell electric conductance and streaming current
,”
J. Membr. Sci.
496
,
293
(
2015
).
19.
Y.
Lanteri
,
P.
Fievet
,
S.
Déon
,
P.
Sauvade
,
W.
Ballout
, and
A.
Szymczyk
, “
Electrokinetic characterization of hollow fibers by streaming current, streaming potential and electric conductance
,”
J. Membr. Sci.
411–412
,
193
(
2012
).
20.
S.
Sahu
,
B.
Mondal
, and
S.
Bhattacharyya
, “
A numerical study supplemented with theoretical analysis on streaming potential in a soft nanochannel influenced by ion partitioning and mobile surface charge-dependent wall slip
,”
Phys. Fluids
35
,
122021
(
2023
).
21.
K. A.
Mauritz
and
R. B.
Moore
, “
State of understanding of Nafion
,”
Chem. Rev.
104
,
4535
(
2004
).
22.
B.
Fan
and
P. R.
Bandaru
, “
Modulation of the streaming potential and slip characteristics in electrolyte flow over liquid-filled surfaces
,”
Langmuir
35
,
6203
(
2019
).
23.
H.
Zhao
, “
Streaming potential generated by a pressure-driven flow over superhydrophobic stripes
,”
Phys. Fluids
23
,
022003
(
2011
).
24.
D.
Stein
,
M.
Kruithof
, and
C.
Dekker
, “
Surface-charge-governed ion transport in nanofluidic channels
,”
Phys. Rev. Lett.
93
,
035901
(
2004
).
25.
J.
Kim
,
I.
Cho
,
H.
Lee
, and
S. J.
Kim
, “
Ion concentration polarization by bifurcated current path
,”
Sci. Rep.
7
,
5091
(
2017
).
26.
P.
Somovilla
,
J.
Villaluenga
,
V.
Barragán
, and
M.
Izquierdo-Gil
, “
Experimental determination of the streaming potential across cation-exchange membranes with different morphologies
,”
J. Membr. Sci.
500
,
16
(
2016
).
27.
L.
Yu
,
C.
Shi
,
W.
Xi
,
J. C.
Yeo
,
R. H.
Soon
,
Z.
Chen
,
P.
Song
, and
C. T.
Lim
, “
Streaming current based microtubular enzymatic sensor for self‐powered detection of urea
,”
Adv. Mater. Technol.
4
,
1800430
(
2019
).
28.
M.
Sbaı¨
,
P.
Fievet
,
A.
Szymczyk
,
B.
Aoubiza
,
A.
Vidonne
, and
A.
Foissy
, “
Streaming potential, electroviscous effect, pore conductivity and membrane potential for the determination of the surface potential of a ceramic ultrafiltration membrane
,”
J. Membr. Sci.
215
,
1
(
2003
).
29.
Q.
Zhao
,
P.
Majsztrik
, and
J.
Benziger
, “
Diffusion and interfacial transport of water in Nafion
,”
J. Phys. Chem. B
115
,
2717
(
2011
).
30.
Q.
Duan
,
H.
Wang
, and
J.
Benziger
, “
Transport of liquid water through Nafion membranes
,”
J. Membr. Sci.
392–393
,
88
(
2012
).
31.
E.
Donath
and
A.
Voigt
, “
Streaming current and streaming potential on structured surfaces
,”
J. Colloid Interface Sci.
109
,
122
(
1986
).
32.
A.
Yaroshchuk
and
E.
Zholkovskiy
, “
Streaming potential with ideally polarizable electron-conducting substrates
,”
Langmuir
38
(
32
),
9974
9980
(
2022
).
33.
J.
Bear
,
Dynamics of Fluids in Porous Media
(
Dover
,
1988
).
34.
J. A.
Lee
,
D.
Lee
,
S.
Park
,
H.
Lee
, and
S. J.
Kim
, “
Non-negligible water-permeance through nanoporous ion exchange medium
,”
Sci. Rep.
8
,
12842
(
2018
).
35.
D.
Lee
,
J. A.
Lee
,
H.
Lee
, and
S. J.
Kim
, “
Spontaneous selective preconcentration leveraged by ion exchange and imbibition through nanoporous medium
,”
Sci. Rep.
9
,
2336
(
2019
).
36.
S.
Park
,
Y.
Jung
,
S. Y.
Son
,
I.
Cho
,
Y.
Cho
,
H.
Lee
,
H.-Y.
Kim
, and
S. J.
Kim
, “
Capillarity ion concentration polarization as spontaneous desalting mechanism
,”
Nat. Commun.
7
,
11223
(
2016
).
37.
S. C.
Chapra
and
R. P.
Canale
,
Numerical Methods for Engineers
(
McGraw-Hill Education
,
2016
).
38.
R. B.
Schoch
,
J.
Han
, and
P.
Renaud
, “
Transport phenomena in nanofluidics
,”
Rev. Mod. Phys.
80
,
839
(
2008
).
39.
I.
Rubinstein
and
B.
Zaltzman
, “
Electro-osmotically induced convection at a permselective membrane
,”
Phys. Rev. E
62
,
2238
(
2000
).
40.
C. L.
Druzgalski
,
M. B.
Andersen
, and
A.
Mani
, “
Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface
,”
Phys. Fluids
25
,
110804
(
2013
).
41.
E. A.
Demekhin
,
N. V.
Nikitin
, and
V. S.
Shelistov
, “
Direct numerical simulation of electrokinetic instability and transition to chaotic motion
,”
Phys. Fluids
25
,
122001
(
2013
).
42.
G. S.
Ganchenko
,
E. N.
Kalaydin
,
J.
Schiffbauer
, and
E. A.
Demekhin
, “
Modes of electrokinetic instability for imperfect electric membranes
,”
Phys. Rev. E
94
,
063106
(
2016
).
43.
M. B.
Andersen
,
K. M.
Wang
,
J.
Schiffbauer
, and
A.
Mani
, “
Confinement effects on electroconvective instability
,”
Electrophoresis.
38
,
702
(
2017
).
44.
R.
Abu-Rjal
,
L.
Prigozhin
,
I.
Rubinstein
, and
B.
Zaltzman
, “
Equilibrium electro-convective instability in concentration polarization: The effect of non-equal ionic diffusivities and longitudinal flow
,”
Russ. J. Electrochem.
53
,
903
(
2017
).
45.
R. F.
Probstein
,
Physicochemical Hydrodynamics: An Introduction
(
Wiley
,
Hoboken, NJ
,
2005
).
You do not currently have access to this content.