Aortic dissection (AD) is a life-threatening condition characterized by a tear in the aortic wall, resulting in the separation of its layers and the formation of true and false lumens. The aberrant right subclavian artery (ARSA) is frequently observed in AD patients. Structural changes to the aortic arch create abnormal hemodynamics, making ARSA a potential risk factor for AD development. This study aims to investigate the relationship between the hemodynamics of ARSA patients and AD initiation using computational fluid dynamics (CFD). A total of twelve models divided into three groups of the aortic arch were constructed based on computed tomography angiography (CTA) images. Group A consists of four models constructed based on patients with both ARSA and acute AD. Group B consists of four models modified from the ARSA models (group A) by repositioning the right subclavian artery to the brachiocephalic trunk, and group C consists of four models derived from CTA images of healthy volunteers as a control group. CFD simulations were conducted to evaluate wall shear stress (WSS), oscillatory shear index (OSI) as well as helicity and blood flow patterns within the aorta. The results reveal that ARSA leads to sustained helical blood flow, increased tangential forces, and lower OSI values in regions of tears. This study demonstrates that congenital ARSA damages aortic wall dynamics by inducing non-physiological high helical blood flow, thereby increasing the risk of AD.

1.
S.
Priya
,
R.
Thomas
,
P.
Nagpal
,
A.
Sharma
, and
M.
Steigner
, “
Congenital anomalies of the aortic arch
,”
Cardiovasc. Diagn. Ther.
8
,
S26
S44
(
2018
).
2.
R.
Fitridge
and
M.
Thompson
, “
Mechanisms of vascular disease: A reference book for vascular specialists
,” in
Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists
(
University of Adelaide Press
,
2011
) Chap.
14
.
3.
K. M.
Wanamaker
,
C. C.
Amadi
,
J. S.
Mueller
, and
R. J.
Moraca
, “
Incidence of aortic arch anomalies in patients with thoracic aortic dissections
,”
J. Card. Surg.
28
,
151
154
(
2013
).
4.
G. P.
Tapia
,
X.
Zhu
,
J.
Xu
,
P.
Liang
,
G.
Su
,
H.
Liu
,
Y.
Liu
,
L.
Shu
,
S.
Liu
, and
C.
Huang
, “
Incidence of branching patterns variations of the arch in aortic dissection in chinese patients
,”
Med. (Baltimore)
94
,
e795
(
2015
).
5.
S.
Shalhub
,
M.
Schäfer
,
T. S.
Hatsukami
,
M. P.
Sweet
,
J. J.
Reynolds
,
F. A.
Bolster
,
S. H.
Shin
,
T. B.
Reece
,
N.
Singh
,
B. W.
Starnes
, and
O.
Jazaeri
, “
Association of variant arch anatomy with type b aortic dissection and hemodynamic mechanisms
,”
J. Vascular Surg.
68
,
1640
1648
(
2018
).
6.
J.
Yin
,
F.
Liu
,
J.
Wang
,
P.
Yuan
,
S.
Wang
, and
W.
Guo
, “
Aortic dissection: Global epidemiology
,”
Cardiology Plus
7
,
151
(
2022
).
7.
N. T.
Kouchoukos
and
P.
Masetti
, “
Aberrant subclavian artery and kommerell aneurysm: Surgical treatment with a standard approach
,”
J. Thoracic Cardiovascular Surg.
133
,
888
892
(
2007
).
8.
E.
Kieffer
,
A.
Bahnini
, and
F.
Koskas
, “
Aberrant subclavian artery: Surgical treatment in thirty-three adult patients
,”
J. Vascular Surg.
19
,
100
111
(
1994
).
9.
E. H.
Austin
and
W. G.
Wolfe
, “
Aneurysm of aberrant subclavian artery with a review of the literature
,”
J. Vascular Surg.
2
,
571
577
(
1985
).
10.
C.
Cinà
,
H.
Althani
,
J.
Pasenau
, and
L.
Abouzahr
, “
Kommerell's diverticulum and right-sided aortic arch: A cohort study and review of the literature
,”
J. Vascular Surg.
39
,
131
139
(
2004
).
11.
D.
Li
,
J.
Wang
,
W.
Zeng
,
X.
Zeng
,
Z.
Liu
,
H.
Cao
,
D.
Yuan
, and
T.
Zheng
, “
The loss of helical flow in the thoracic aorta might be an identifying marker for the risk of acute type b aortic dissection
,”
Comput. Methods Programs Biomed.
230
,
107331
(
2023
).
12.
J.
Sheriff
,
D.
Bluestein
,
G.
Girdhar
, and
J.
Jesty
, “
High-shear stress sensitizes platelets to subsequent low-shear conditions
,”
Ann. Biomed. Eng.
38
,
1442
1450
(
2010
).
13.
M.
Nobili
,
J.
Sheriff
,
U.
Morbiducci
,
A.
Redaelli
, and
D.
Bluestein
, “
Platelet activation due to hemodynamic shear stresses: Damage accumulation model and comparison to in vitro measurements
,”
ASAIO J.
54
,
64
(
2008
).
14.
Y.
Ikeno
,
Y.
Takayama
,
T.
Matsueda
,
M.
Miyoshi
,
T.
Motoki
,
A.
Kurushima
,
T.
Otani
, and
Y.
Fukumura
, “
Computational fluid dynamics-based prediction of aortic aneurysm rupture in a patient with chronic aortic dissection
,”
Gen. Thorac. Cardiovasc. Surg. Cases
2
,
80
(
2023
).
15.
S.
Numata
,
K.
Itatani
,
H.
Kawajiri
,
S.
Yamazaki
,
K.
Kanda
, and
H.
Yaku
, “
Computational fluid dynamics simulation of the right subclavian artery cannulation
,”
J. Thorac. Cardiovasc. Surg.
154
,
480
487
(
2017
).
16.
N.
Kimura
,
S.
Imada
,
D.
Hori
, and
M.
Nakamura
, “
Thoracic endovascular aortic repair for acute aortic dissection complicated by mesenteric malperfusion: An evaluation by computational fluid dynamics
,”
Interdiscipl. CardioVasc. Thorac. Surg.
38
,
ivae047
(
2024
).
17.
K.
Bäumler
,
V.
Vedula
,
A. M.
Sailer
,
J.
Seo
,
P.
Chiu
,
G.
Mistelbauer
,
F. P.
Chan
,
M. P.
Fischbein
,
A. L.
Marsden
, and
D.
Fleischmann
, “
Fluid–structure interaction simulations of patient-specific aortic dissection
,”
Biomech. Model. Mechanobiol.
19
,
1607
1628
(
2020
).
18.
J. V.
Lombardi
,
G. C.
Hughes
,
J. J.
Appoo
,
J. E.
Bavaria
,
A. W.
Beck
,
R. P.
Cambria
,
K.
Charlton-Ouw
,
M. H.
Eslami
,
K. M.
Kim
,
B. G.
Leshnower
,
T.
Maldonado
,
T. B.
Reece
, and
G. J.
Wang
, “
Society for vascular surgery (svs) and society of thoracic surgeons (sts) reporting standards for type b aortic dissections
,”
J. Vascular Surg.
71
,
723
747
(
2020
).
19.
E.
Panagouli
,
I.
Antonopoulos
,
G.
Tsoucalas
,
A.
Samolis
,
D.
Venieratos
, and
T.
Troupis
, “
Morphometry of the brachiocephalic artery: A cadaveric anatomical study
,”
Cureus
12
,
e9897
(
2020
).
20.
E. I.
Honig
,
I.
Steinberg
, and
C. T.
Dotter
, “
Innominate artery: Angiocardiographic study
,”
Radiology
58
,
80
88
(
1952
).
21.
E.
Panagouli
,
E.
Lolis
, and
D.
Venieratos
, “
A morphometric study concerning the branching points of the main arteries in humans: Relationships and correlations
,”
Ann. Anat. Anatomischer Anzeiger
193
,
86
99
(
2011
).
22.
Y.
Zhu
,
S.
Mirsadraee
,
G.
Asimakopoulos
,
A.
Gambaro
,
U.
Rosendahl
,
J.
Pepper
, and
X. Y.
Xu
, “
Association of hemodynamic factors and progressive aortic dilatation following type a aortic dissection surgical repair
,”
Sci. Rep.
11
,
11521
(
2021
).
23.
Z.
Cheng
,
F. P. P.
Tan
,
C. V.
Riga
,
C. D.
Bicknell
,
M. S.
Hamady
,
R. G. J.
Gibbs
,
N. B.
Wood
, and
X. Y.
Xu
, “
Analysis of flow patterns in a patient-specific aortic dissection model
,”
J. Biomech. Eng.
132
,
51007
(
2010
).
24.
S.
Pirola
,
B.
Guo
,
C.
Menichini
,
S.
Saitta
,
W.
Fu
,
Z.
Dong
, and
X. Y.
Xu
, “
4-D flow MRI-based computational analysis of blood flow in patient-specific aortic dissection
,”
IEEE Trans. Biomed. Eng.
66
,
3411
3419
(
2019
).
25.
S.
Pirola
,
Z.
Cheng
,
O.
Jarral
,
D.
O'Regan
,
J.
Pepper
,
T.
Athanasiou
, and
X.
Xu
, “
On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics
,”
J. Biomech.
60
,
15
21
(
2017
).
26.
J.
Wen
,
T.
Yan
,
Z.
Su
,
H.
Huang
,
Q.
Gao
,
X.
Chen
,
K. K.
Wong
, and
L.
Peng
, “
Risk evaluation of type b aortic dissection based on wss-based indicators distribution in different types of aortic arch
,”
Comput. Methods Programs Biomed.
221
,
106872
(
2022
).
27.
X.
Liu
,
Y.
Fan
,
A.
Sun
, and
X.
Deng
, “
Numerical simulation of nucleotide transport in the human thoracic aorta
,”
J. Biomech.
46
,
819
827
(
2013
).
28.
U.
Morbiducci
,
R.
Ponzini
,
G.
Rizzo
,
M.
Cadioli
,
A.
Esposito
,
F. M.
Montevecchi
, and
A.
Redaelli
, “
Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: An in vivo study
,”
Biomech. Model. Mechanobiol.
10
,
339
355
(
2011
).
29.
T. A.
Hope
,
M.
Markl
,
L.
Wigström
,
M. T.
Alley
,
D. C.
Miller
, and
R. J.
Herfkens
, “
Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping
,”
J. Magn. Reson. Imaging
26
,
1471
1479
(
2007
).
30.
K.
Takahashi
,
T.
Sekine
,
T.
Ando
,
Y.
Ishii
, and
S.
Kumita
, “
Utility of 4D flow MRI in thoracic aortic diseases: A literature review of clinical applications and current evidence
,”
MRMS.
21
,
327
339
(
2022
).
31.
L.
Peng
,
Y.
Qiu
,
Z.
Yang
,
D.
Yuan
,
C.
Dai
,
D.
Li
,
Y.
Jiang
, and
T.
Zheng
, “
Patient-specific computational hemodynamic analysis for interrupted aortic arch in an adult: Implications for aortic dissection initiation
,”
Sci. Rep.
9
,
8600
(
2019
).
32.
J.
Buerk
,
P.
Blanke
,
Z.
Stankovic
,
A.
Barker
,
M.
Russe
,
J.
Geiger
,
A.
Frydrychowicz
,
M.
Langer
, and
M.
Markl
, “
Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR
,”
J. Cardiovascular Magn. Resonance
14
,
80
84
(
2012
).
33.
Y.
Qiu
,
J.
Wang
,
J.
Zhao
,
T.
Wang
,
T.
Zheng
, and
D.
Yuan
, “
Association between blood flow pattern and rupture risk of abdominal aortic aneurysm based on computational fluid dynamics
,”
Eur. J. Vascular Endovasc. Surg.
64
,
155
164
(
2022
).
34.
M.
Polguj
,
Ł.
Chrzanowski
,
J. D.
Kasprzak
,
L.
Stefańczyk
,
M.
Topol
, and
A.
Majos
, “
The aberrant right subclavian artery (arteria lusoria): The morphological and clinical aspects of one of the most important variations–a systematic study of 141 reports
,”
TheScientificWorldJournal
2014
,
1
.
You do not currently have access to this content.