Air-permeable porous media host air within their pores. Upon removal from the material's interior, these porous media have the tendency to reabsorb air from the surrounding, acting as a suction pump. Therefore, the technique used to convert porous media into a pump consists of degassing the material to remove the air inside. The suction property when recovering the air can be used to move a liquid through a microfluidic channel. Porous media pumps are very accurate devices to move liquids in a completely controlled way. By studying the dynamics of the liquid front moved by these pumps, it is possible to extract characteristic properties of both the fluid and the porous material. In this article, we have developed a theoretical mathematical model that precisely characterizes the dynamics of a liquid moved by a degassed porous media pump through a microchannel by comparing it with experimental data. We have seen the differences between sealing the external surface of the pump so that it cannot absorb air from the outside, both mathematically and experimentally. We have observed that, in all cases, the theory fits satisfactorily with the experiments, corroborating the validity of the model. The creation of microfluidic pumps using porous media can be a very useful tool in various fields due to its long operating time and small size and the fact that it operates without any external power source.

1.
L.
Xu
,
A.
Wang
,
X.
Li
, and
K. W.
Oh
, “
Passive micropumping in microfluidics for point-of-care testing
,”
Biomicrofluidics
14
,
031503
(
2020
).
2.
J.
Park
and
J.-K.
Park
, “
Integrated microfluidic pumps and valves operated by finger actuation
,”
Lab Chip
19
,
2973
2977
(
2019
).
3.
C.
Srisomwat
,
P.
Teengam
,
N.
Chuaypen
,
P.
Tangkijvanich
,
T.
Vilaivan
, and
O.
Chailapakul
, “
Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection
,”
Sens. Actuators, B
316
,
128077
(
2020
).
4.
M. T.
Guler
,
Z.
Isiksacan
,
M.
Serhatlioglu
, and
C.
Elbuken
, “
Self-powered disposable prothrombin time measurement device with an integrated effervescent pump
,”
Sens. Actuators, B
273
,
350
357
(
2018
).
5.
F. K.
Balagaddé
,
L.
You
,
C. L.
Hansen
,
F. H.
Arnold
, and
S. R.
Quake
, “
Long-term monitoring of bacteria undergoing programmed population control in a microchemostat
,”
Science
309
,
137
140
(
2005
).
6.
K.
Nagy
,
Á.
Ábrahám
,
J. E.
Keymer
, and
P.
Galajda
, “
Application of microfluidics in experimental ecology: The importance of being spatial
,”
Front. Microbiol.
9
,
496
(
2018
).
7.
Y.
Tokuoka
,
K.
Kondo
,
N.
Nakaigawa
, and
T.
Ishida
, “
Development of a microfluidic device to form a long chemical gradient in a tissue from both ends with an analysis of its appearance and content
,”
Micromachines
12
,
1482
(
2021
).
8.
P. M.
Van Midwoud
,
G. M.
Groothuis
,
M. T.
Merema
, and
E.
Verpoorte
, “
Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies
,”
Biotechnol. Bioeng.
105
,
184
194
(
2010
).
9.
G.
Charvin
,
C.
Oikonomou
, and
F.
Cross
, “
Long-term imaging in microfluidic devices
,” in
Live Cell Imaging: Methods and Protocols
(
Springer
,
2009
) pp.
229
242
.
10.
S. M.
Grist
,
S. S.
Nasseri
,
L.
Laplatine
,
J. C.
Schmok
,
D.
Yao
,
J.
Hua
,
L.
Chrostowski
, and
K. C.
Cheung
, “
Long-term monitoring in a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia
,”
Sci. Rep.
9
,
17782
(
2019
).
11.
E.
Gencturk
,
E.
Yurdakul
,
A. Y.
Celik
,
S.
Mutlu
, and
K. O.
Ulgen
, “
Cell trapping microfluidic chip made of cyclo olefin polymer enabling two concurrent cell biology experiments with long term durability
,”
Biomed. Microdev.
22
(
1
),
12
(
2020
).
12.
L.
Vaccaro
,
C.
Petrucci
,
V.
Kozell
, and
E.
Ballerini
, “
Flow tools to define waste/time/energy-minimized protocols
,” in
Sustainable Flow Chemistry: Methods and Applications
(Wiley Online Library,
2017
), pp.
165
192
.
13.
R.
Porta
,
M.
Benaglia
, and
A.
Puglisi
, “
Flow chemistry: Recent developments in the synthesis of pharmaceutical products
,”
Org. Process Res. Dev.
20
,
2
25
(
2016
).
14.
J. A.
Lummiss
,
P. D.
Morse
,
R. L.
Beingessner
, and
T. F.
Jamison
, “
Towards more efficient, greener syntheses through flow chemistry
,”
Chem. Rec.
17
,
667
680
(
2017
).
15.
A. A.
Folgueiras-Amador
,
K.
Philipps
,
S.
Guilbaud
,
J.
Poelakker
, and
T.
Wirth
, “
An easy-to-machine electrochemical flow microreactor: Efficient synthesis of isoindolinone and flow functionalization
,”
Angew. Chem., Int. Ed.
56
,
15446
15450
(
2017
).
16.
S.
Mashaghi
,
A.
Abbaspourrad
,
D. A.
Weitz
, and
A. M.
van Oijen
, “
Droplet microfluidics: A tool for biology, chemistry and nanotechnology
,”
TrAC Trends Anal. Chem.
82
,
118
125
(
2016
).
17.
G.
Zhang
and
J.
Sun
, “
Lipid in chips: A brief review of liposomes formation by microfluidics
,”
Int. J. Nanomed.
16
,
7391
(
2021
).
18.
M.
Ripoll
,
E.
Martin
,
M.
Enot
,
O.
Robbe
,
C.
Rapisarda
,
M.-C.
Nicolai
,
A.
Deliot
,
P.
Tabeling
,
J.-R.
Authelin
,
M.
Nakach
et al, “
Optimal self-assembly of lipid nanoparticles (LNP) in a ring micromixer
,”
Sci. Rep.
12
,
9483
(
2022
).
19.
M.
Eichler
,
C.-P.
Klages
, and
K.
Lachmann
, “
Surface functionalization of microfluidic devices
,” in
Microsystems Pharmatechnology
(Springer Nature Link,
2016
), pp.
59
97
.
20.
M.
Uh
,
J.-S.
Kim
,
J.-H.
Park
,
D. H.
Jeong
,
H.-Y.
Lee
,
S.-M.
Lee
, and
S.-K.
Lee
, “
Fabrication of localized surface plasmon resonance sensor based on optical fiber and micro fluidic channel
,”
J. Nanosci. Nanotechnol.
17
,
1083
1091
(
2017
).
21.
E. Team
,
Microreactors & Microfluidics in Chemistry–A Review
(
Elveflow
,
2021
).
22.
S. O.
Woo
,
M.
Oh
,
K.
Nietfeld
,
B.
Boehler
, and
Y.
Choi
, “
Molecular diffusion analysis of dynamic blood flow and plasma separation driven by self-powered microfluidic devices
,”
Biomicrofluidics
15
,
034106
(
2021
).
23.
J.
Etxebarria-Elezgarai
,
Y.
Alvarez-Braña
,
R.
Garoz-Sanchez
,
F.
Benito-Lopez
, and
L.
Basabe-Desmonts
, “
Large-volume self-powered disposable microfluidics by the integration of modular polymer micropumps with plastic microfluidic cartridges
,”
Ind. Eng. Chem. Res.
59
,
22485
22491
(
2020
).
24.
Y.
Alvarez-Braña
,
J.
Etxebarria-Elezgarai
,
L. R.
de Larrinaga-Vicente
,
F.
Benito-Lopez
, and
L.
Basabe-Desmonts
, “
Modular micropumps fabricated by 3D printed technologies for polymeric microfluidic device applications
,”
Sens. Actuators, B
342
,
129991
(
2021
).
25.
G.
Li
,
Y.
Luo
,
Q.
Chen
,
L.
Liao
, and
J.
Zhao
, “
A “place n play” modular pump for portable microfluidic applications
,”
Biomicrofluidics
6
,
014118
(
2012
).
You do not currently have access to this content.