Seaports are crucial components of maritime transportation systems. However, the presence of water waves significantly affects the speed and stability of vessels passing through ports, reducing the port efficiency. Traditional methods of blocking waves are not feasible since they also impede vessel passage. Therefore, finding a solution that effectively mitigates water wave impact while allowing unhindered vessel passage is of paramount importance in maritime transportation. In this article, we introduce a gradient refractive index profile into water wave manipulation and design a novel waveguide isolator device. It functions similarly to an electrical diode, allowing water waves to pass in one direction while blocking them in the opposite direction. Moreover, its waveguide-like hollow structure enables it to block water waves without hindering the passage of vessels. We elucidate the wave-blocking mechanism through mode analysis and numerical simulations, and experimentally validated the device, observing a significant “water wave diode effect.” This effect effectively blocks water waves in one direction while allowing passage in the other. This is the first time that blocking water waves without hindering vessel passage has been realized in the experiment, showing great potential for applications in maritime ports and ocean freight transport.

1.
D.
González-Marco
,
J. P.
Sierra
,
O. F.
de Ybarra
, and
A.
Sánchez-Arcilla
, “
Implications of long waves in harbor management: The Gijón Port case study
,”
Ocean Coast. Manag.
51
,
180
(
2008
).
2.
C.
Brysson
, “
Wave action on vertical wall breakwaters
,”
Nature (London)
136
,
283
286
(
1935
).
3.
M.
Iris
et al, “
Wave attenuation over coastal salt marshes under storm surge conditions
,”
Nat. Geosci.
7
,
727
731
(
2014
).
4.
X.
Zhou
,
Z.
Dai
,
W.
Pang
,
J.
Wang
, and
C.
Long
, “
Wave attenuation over mangroves in the Nanliu Delta, China
,”
Front. Mar. Sci.
9
,
874818
(
2022
).
5.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
, “
Controlling electromagnetic fields
,”
Science
312
,
1780
1782
(
2006
).
6.
U.
Leonhardt
, “
Optical conformal mapping
,”
Science
312
,
1777
1780
(
2006
).
7.
H.
Chen
,
C. T.
Chan
, and
P.
Sheng
, “
Transformation optics and metamaterials
,”
Nat. Mater.
9
,
387
396
(
2010
).
8.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
, “
Metamaterial electromagnetic cloak at microwave frequencies
,”
Science
314
,
977
980
(
2006
).
9.
Z.
Ruan
and
S.
Fan
, “
Superscattering of light from subwavelength nanostructures
,”
Phys. Rev. Lett.
105
,
013901
(
2010
).
10.
C.
Qian
,
X.
Lin
,
Y.
Yang
,
X.
Xiong
,
H.
Wang
,
E.
Li
,
I.
Kaminer
,
B.
Zhang
, and
H.
Chen
, “
Experimental observation of superscattering
,”
Phys. Rev. Lett.
122
,
063901
(
2019
).
11.
Z.
Ruan
and
S.
Fan
, “
Design of subwavelength superscattering nanospheres
,”
Appl. Phys. Lett.
98
,
043101
(
2011
).
12.
J. B.
Pendry
, “
Negative refraction
,”
Contem. Phys.
45
,
191
202
(
2004
).
13.
J. B.
Pendry
, “
Negative refraction makes a perfect lens
,”
Phys. Rev. Lett.
85
,
3966
(
2000
).
14.
A.
Poddubny
,
I.
Iorsh
,
P.
Belov
, and
Y.
Kivshar
, “
Hyperbolic metamaterials
,”
Nat. Photonics
7
,
948
957
(
2013
).
15.
S. A.
Cummer
and
D.
Schurig
, “
One path to acoustic cloaking
,”
New J. Phys.
9
,
45
(
2007
).
16.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alù
, “
Controlling sound with acoustic metamaterials
,”
Nat. Rev. Mater.
1
,
1
13
(
2016
).
17.
H.
Chen
and
C. T.
Chan
, “
Acoustic cloaking and transformation acoustics
,”
J. Phys. D: Appl. Phys.
43
,
113001
(
2010
).
18.
H.
Chen
and
C. T.
Chan
, “
Acoustic cloaking in three dimensions using acoustic metamaterials
,”
Appl. Phys. Lett.
91
(
18
),
183518
(
2007
).
19.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
,
1734
1736
(
2000
).
20.
N.
Fang
,
D.
Xi
,
J.
Xu
,
M.
Ambati
,
W.
Srituravanich
,
C.
Sun
, and
X.
Zhang
, “
Ultrasonic metamaterials with negative modulus
,”
Nat. Mater.
5
,
452
456
(
2006
).
21.
J.
Li
and
C. T.
Chan
, “
Double-negative acoustic metamaterial
,”
Phys. Rev. E
70
,
055602
(
2004
).
22.
V. M.
García-Chocano
,
J.
Christensen
, and
J.
Sánchez-Dehesa
, “
Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics
,”
Phys. Rev. Lett.
112
,
144301
(
2014
).
23.
T.
Brunet
,
A.
Merlin
,
B.
Mascaro
,
K.
Zimny
,
J.
Leng
,
O.
Poncelet
,
C.
Aristégui
, and
O.
Mondain-Monval
, “
Soft 3D acoustic metamaterial with negative index
,”
Nat. Mater.
14
,
384
388
(
2015
).
24.
S.
Zhu
,
X.
Zhao
,
L.
Han
,
J.
Zi
,
X.
Hu
, and
H.
Chen
, “
Controlling water waves with artificial structures
,”
Nat. Rev. Phys.
6
,
231
245
(
2024
).
25.
M.
Farhat
,
S.
Enoch
,
S.
Guenneau
, and
A. B.
Movchan
, “
Broadband cylindrical acoustic cloak for linear surface waves in a fluid
,”
Phys. Rev. Lett.
101
,
134501
(
2008
).
26.
G.
Dupont
,
O.
Kimmoun
,
B.
Molin
,
S.
Guenneau
, and
S.
Enoch
, “
Numerical and experimental study of an invisibility carpet in a water channel
,”
Phys. Rev. E
91
,
023010
(
2015
).
27.
Z.
Wang
,
C.
Li
,
R.
Zatianina
,
P.
Zhang
, and
Y.
Zhang
, “
Carpet cloak for water waves
,”
Phys. Rev. E
96
,
053107
(
2017
).
28.
S.
Zou
,
Y.
Xu
,
R.
Zatianina
,
C.
Li
,
X.
Liang
,
L.
Zhu
,
Y.
Zhang
,
G.
Liu
,
Q. H.
Liu
,
H.
Chen
, and
Z.
Wang
, “
Broadband waveguide cloak for water waves
,”
Phys. Rev. Lett.
123
,
074501
(
2019
).
29.
Y.
Hua
,
C.
Qian
,
H.
Chen
, and
H.
Wang
, “
Experimental topology-optimized cloak for water waves
,”
Mater. Today Phys.
27
,
100754
(
2022
).
30.
H.
Chen
,
J.
Yang
,
J.
Zi
, and
C. T.
Chan
, “
Transformation media for linear liquid surface waves
,”
Europhys. Lett.
85
,
24004
(
2009
).
31.
C. P.
Berraquero
,
A.
Maurel
,
P.
Petitjeans
, and
V.
Pagneux
, “
Experimental realization of a water-wave metamaterial shifter
,”
Phys. Rev. E
88
,
051002
(
2013
).
32.
X.
Hu
and
C. T.
Chan
, “
Refraction of water waves by periodic cylinder arrays
,”
Phys. Rev. Lett.
95
,
154501
(
2005
).
33.
C.
Li
,
L.
Xu
,
L.
Zhu
,
S.
Zou
,
Q. H.
Liu
,
Z.
Wang
, and
H.
Chen
, “
Concentrators for water waves
,”
Phys. Rev. Lett.
121
,
104501
(
2018
).
34.
L.
Han
,
S.
Chen
, and
H.
Chen
, “
Water wave polaritons
,”
Phys. Rev. Lett.
128
,
204501
(
2022
).
35.
Z.
Che
,
W.
Liu
,
J.
Ye
et al, “
Generation of spatiotemporal vortex pulses by resonant diffractive grating
,”
Phys. Rev. Lett.
132
,
044001
(
2024
).
36.
S.
Chen
,
Y.
Zhou
,
Z.
Wang
, and
H.
Chen
, “
Metagrating in ancient Luoyang Bridge
,”
Europhys. Lett.
132
,
24003
(
2020
).
37.
L.
Han
,
Q.
Duan
,
J.
Duan
,
S.
Zhu
,
S.
Chen
,
Y.
Yin
, and
H.
Chen
, “
Unidirectional propagation of water waves near ancient Luoyang Bridge
,”
Front. Phys.
19
,
32206
(
2024
).
38.
X.
Hu
,
C. T.
Chan
,
K. M.
Ho
, and
J.
Zi
, “
Negative effective gravity in water waves by periodic resonator arrays
,”
Phys. Rev. Lett.
106
,
174501
(
2011
).
39.
X.
Zhao
,
X.
Hu
, and
J.
Zi
, “
Fast water waves in stationary surface disk arrays
,”
Phys. Rev. Lett.
127
,
254501
(
2021
).
40.
Z.
Qin
,
C.
Qian
,
L.
Shen
,
X.
Wang
,
I.
Kaminer
,
H.
Chen
, and
H.
Wang
, “
Superscattering of water waves
,”
Nat. Sci. Rev.
10
,
nwac255
(
2023
).
41.
D. R.
Smith
,
J. J.
Mock
,
A. F.
Starr
, and
D.
Schurig
, “
Gradient index metamaterials
,”
Phys. Rev. E
71
,
036609
(
2005
).
42.
S.
Sun
,
Q.
He
,
S.
Xiao
,
Q.
Xu
,
X.
Li
, and
L.
Zhou
, “
Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves
,”
Nat. Mater.
11
,
426
(
2012
).
43.
Y.
Xu
,
Y.
Fu
, and
H.
Chen
, “
Planar gradient metamaterials
,”
Nat. Rev. Mater.
1
,
1
(
2016
).
44.
C.
Gu
,
Y.
Xu
,
S.
Li
,
W.
Lu
,
J.
Li
,
H.
Chen
, and
B.
Hou
, “
A broadband polarization-insensitive cloak based on mode conversion
,”
Sci. Rep.
5
(
1
),
12106
(
2015
).
45.
W. K.
Cao
,
L. T.
Wu
,
C.
Zhang
,
J.-C.
Ke
,
Q.
Cheng
,
T.-J.
Cui
, and
Y.
Jing
, “
Asymmetric transmission of acoustic waves in a waveguide via gradient index metamaterials
,”
Sci. Bull.
64
,
808
(
2019
).
46.
Y.
Xu
,
C.
Gu
,
B.
Hou
et al, “
Broadband asymmetric waveguiding of light without polarization limitations
,”
Nat. Commun.
4
,
2561
(
2013
).
47.
H.
Lamb
,
Hydrodynamics
(
Cambridge University Press
,
Cambridge
,
1995
).
48.
S.
Wildeman
, “
Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop
,”
Exp. Fluids
59
,
97
(
2018
).
49.
W. H.
Hager
, “
Wilfrid Noel Bond and the bond number
,”
J. Hydraul. Res.
50
,
3
9
(
2012
).
50.
H. P.
Degueldre
, “
Random focusing of tsunami waves
,” Ph.D. dissertation (
Georg-August-Universität Göttingen
,
2015
).
51.
I.
Irie
,
R.
Hidayat
,
K.
Morimoto
et al, “
Study of siltation protection in Asian ports
,” in
Proceedings of the Twelfth (2002) International Offshore and Polar Engineering Conference
(
International Society of Offshore and Polar Engineers
,
2002
), pp.
539
544
.
You do not currently have access to this content.