Relativistic electrons (>1 MeV) confined within the Earth's radiation belt, which presents significant hazards to astronauts and spacecraft, potentially arise from sub-relativistic electrons (a few hundred keV) through radial diffusion and wave–particle interactions. This study presents a novel artificial neural network (ANN) prediction model for radiation belt relativistic electron flux at a typical energy of 1.8 MeV, utilizing concurrent measurements of sub-relativistic electron fluxes at Ek = 78–871 keV from Van Allen Probe observations between 2012 and 2019. The historical values of the solar wind and geomagnetic indices are also adopted as inputs of the model. The ANN model has remarkable performance in L = 2.5–6.5, with overall root mean square errors (RMSEs) of 0.2287, prediction efficiencies (PEs) of 0.9241, and Pearson correlation coefficients (CCs) of 0.9478 between observations and predictions in the test set (from April 2018 to March 2019). Statistical analysis indicated that 98.56% of the samples exhibit an observation–prediction difference of less than one order of magnitude, while 85.94% demonstrate a difference of less than 0.5 order. Moreover, predictions can precisely replicate the dynamics of relativistic electrons within the outer radiation belt and the slot region under realistic solar wind conditions and geomagnetic activitiesies. The present model offers novel insights into radiation belt electron predictions and facilitates the validation of results across several instruments onboard spacecraft.

1.
R. M.
Thorne
,
T. P.
O'Brien
,
Y. Y.
Shprits
,
D.
Summers
, and
R. B.
Horne
, “
Timescale for MeV electron microburst loss during geomagnetic storms
,”
J. Geophys. Res.
110
(
A9
),
A09202
, https://doi.org/10.1029/2004JA010882 (
2005
).
2.
D. L.
Turner
,
Y.
Shprits
,
M.
Hartinger
, and
V.
Angelopoulos
, “
Explaining sudden losses of outer radiation belt electrons during geomagnetic storms
,”
Nat. Phys.
8
(
3
),
208
212
(
2012
).
3.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
Z.
Gao
,
G.
Wang
,
Z.
Zhao
,
X.
Feng
, and
F.
Wei
, “
Two-step dropouts of radiation belt electron phase space density induced by a magnetic cloud event
,”
ApJL.
895
(
1
),
L24
(
2020
).
4.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
J.
Wei
,
W.
Zhou
,
H.
Huang
, and
Y.
Xie
, “
Competition between the source and loss processes of radiation belt source, seed, and relativistic electrons induced by a magnetic cloud event
,”
Phys. Fluids
36
(
2
),
26603
(
2024
).
5.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
H.
Huang
,
J.
Hu
,
J.
Wei
,
Q.
Yuan
, and
W.
San
, “
Statistical analysis of the phase space density changes of radiation belt source, seed, and relativistic electrons in response to geomagnetic storms
,”
Phys. Fluids
36
(
3
),
36614
(
2024
).
6.
Y. Y.
Shprits
,
A. Y.
Drozdov
,
M.
Spasojevic
,
A. C.
Kellerman
,
M. E.
Usanova
,
M. J.
Engebretson
,
O. V.
Agapitov
,
I. S.
Zhelavskaya
,
T. J.
Raita
,
H. E.
Spence
,
D. N.
Baker
,
H.
Zhu
, and
N. A.
Aseev
, “
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts
,”
Nat. Commun.
7
,
12883
(
2016
).
7.
X.
Li
,
D. N.
Baker
,
S. G.
Kanekal
,
M.
Looper
, and
M.
Temerin
, “
Long term measurements of radiation belts by SAMPEX and their variations
,”
Geophys. Res. Lett.
28
(
20
),
3827
3830
, https://doi.org/10.1029/2001GL013586 (
2001
).
8.
G. D.
Reeves
,
K. L.
McAdams
,
R. H. W.
Friedel
, and
T. P.
O'Brien
, “
Acceleration and loss of relativistic electrons during geomagnetic storms
,”
Geophys. Res. Lett.
30
(
10
),
1529
, https://doi.org/10.1029/2002GL016513 (
2003
).
9.
D. N.
Baker
,
S. G.
Kanekal
,
V. C.
Hoxie
,
M. G.
Henderson
,
X.
Li
,
H. E.
Spence
,
S. R.
Elkington
,
R. H.
Friedel
,
J.
Goldstein
,
M. K.
Hudson
,
G. D.
Reeves
,
R. M.
Thorne
,
C. A.
Kletzing
, and
S. G.
Claudepierre
, “
A long-lived relativistic electron storage ring embedded in Earth's outer Van Allen belt
,”
Science
340
(
6129
),
186
190
(
2013
).
10.
R. M.
Thorne
,
W.
Li
,
B.
Ni
,
Q.
Ma
,
J.
Bortnik
,
L.
Chen
,
D. N.
Baker
,
H. E.
Spence
,
G. D.
Reeves
,
M. G.
Henderson
,
C. A.
Kletzing
,
W. S.
Kurth
,
G. B.
Hospodarsky
,
J. B.
Blake
,
J. F.
Fennell
,
S. G.
Claudepierre
, and
S. G.
Kanekal
, “
Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus
,”
Nature
504
(
7480
),
411
414
(
2013
).
11.
B.
Ni
,
Z.
Zou
,
X.
Gu
,
C.
Zhou
,
R. M.
Thorne
,
J.
Bortnik
,
R.
Shi
,
Z.
Zhao
,
D. N.
Baker
,
S. G.
Kanekal
,
H. E.
Spence
,
G. D.
Reeves
, and
X.
Li
, “
Variability of the pitch angle distribution of radiation belt ultrarelativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations
,”
JGR. Space Phys.
120
(
6
),
4863
4876
(
2015
).
12.
D. L.
Turner
,
V.
Angelopoulos
,
S. K.
Morley
,
M. G.
Henderson
,
G. D.
Reeves
,
W.
Li
,
D. N.
Baker
,
C.-L.
Huang
,
A.
Boyd
,
H. E.
Spence
,
S. G.
Claudepierre
,
J. B.
Blake
, and
J. V.
Rodriguez
, “
On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event
,”
JGR. Space Phys.
119
(
3
),
1530
1540
(
2014
).
13.
J. C.
Foster
,
J. R.
Wygant
,
M. K.
Hudson
,
A. J.
Boyd
,
D. N.
Baker
,
P. J.
Erickson
, and
H. E.
Spence
, “
Shock-induced prompt relativistic electron acceleration in the inner magnetosphere
,”
JGR. Space Phys.
120
(
3
),
1661
1674
(
2015
).
14.
X.-J.
Zhang
,
W.
Li
,
R. M.
Thorne
,
V.
Angelopoulos
,
Q.
Ma
,
J.
Li
,
J.
Bortnik
,
Y.
Nishimura
,
L.
Chen
,
D. N.
Baker
,
G. D.
Reeves
,
H. E.
Spence
,
C. A.
Kletzing
,
W. S.
Kurth
,
G. B.
Hospodarsky
,
J. B.
Blake
, and
J. F.
Fennell
, “
Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event
,”
JGR. Space Phys.
121
(
9
),
8300
8316
(
2016
).
15.
Z.
Zou
,
J.
Hu
,
W.
San
, and
Q.
Yuan
, “
Partial loss and significant depletion of radiation belt electrons during the April 4, 2017, geomagnetic storm
,”
Phys. Fluids
36
(
12
),
126603
(
2024
).
16.
Q. G.
Zong
,
Y. F.
Wang
,
H.
Zhang
,
S. Y.
Fu
,
H.
Zhang
,
C. R.
Wang
,
C. J.
Yuan
, and
I.
Vogiatzis
, “
Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves
,”
J. Geophys. Res.
117
(
A11
),
A11206
, https://doi.org/10.1029/2012JA018024 (
2012
).
17.
Q.-G.
Zong
,
X.-Z.
Zhou
,
Y. F.
Wang
,
X.
Li
,
P.
Song
,
D. N.
Baker
,
T. A.
Fritz
,
P. W.
Daly
,
M.
Dunlop
, and
A.
Pedersen
, “
Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt
,”
J. Geophys. Res.
114
(
A10
),
A10204
, https://doi.org/10.1029/2009JA014393 (
2009
).
18.
Q.
Zong
,
Y.
Hao
, and
Y.
Wang
, “
Ultra low frequency waves impact on radiation belt energetic particles
,”
Sci. China Ser. E-Technol. Sci.
52
,
3698
3708
(
2009
).
19.
J. M.
Albert
and
Y. Y.
Shprits
, “
Estimates of lifetimes against pitch angle diffusion
,”
J. ATMOSPHERIC Sol.-Terr. Phys
71
(
16
),
1647
1652
(
2009
).
20.
D.
Summers
,
B.
Ni
, and
N. P.
Meredith
, “
Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory
,”
J. Geophys. Res.
112
(
A4
),
A04206
, https://doi.org/10.1029/2006JA011993 (
2007
).
21.
M. E.
Usanova
,
F.
Darrouzet
,
I. R.
Mann
, and
J.
Bortnik
, “
Statistical analysis of EMIC waves in plasmaspheric plumes from Cluster observations
,”
JGR. Space Phys.
118
(
8
),
4946
4951
(
2013
).
22.
X.
Cao
,
B.
Ni
,
D.
Summers
,
Y. Y.
Shprits
,
X.
Gu
,
S.
Fu
,
Y.
Lou
,
Y.
Zhang
,
X.
Ma
,
W.
Zhang
,
H.
Huang
, and
J.
Yi
, “
Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution
,”
Geophys. Res. Lett.
46
(
2
),
590
598
, https://doi.org/10.1029/2018GL081550 (
2019
).
23.
X.
Cao
,
B.
Ni
,
D.
Summers
,
J.
Bortnik
,
X.
Tao
,
Y. Y.
Shprits
,
Y.
Lou
,
X.
Gu
,
S.
Fu
,
R.
Shi
,
Z.
Xiang
, and
Q.
Wang
, “
Bounce resonance scattering of radiation belt electrons by H+ band EMIC waves
,”
JGR. Space Phys.
122
(
2
),
1702
1713
(
2017
).
24.
X.
Cao
,
B.
Ni
,
D.
Summers
,
Z.
Zou
,
S.
Fu
, and
W.
Zhang
, “
Bounce resonance scattering of radiation belt electrons by low‐frequency hiss: Comparison with cyclotron and landau resonances
,”
Geophys. Res. Lett.
44
(
19
),
9547
9554
, https://doi.org/10.1002/2017GL075104 (
2017
).
25.
W.
Li
,
R. M.
Thorne
,
N. P.
Meredith
,
R. B.
Horne
,
J.
Bortnik
,
Y. Y.
Shprits
, and
B.
Ni
, “
Evaluation of whistler mode chorus amplification during an injection event observed on CRRES
,”
J. Geophys. Res.
113
(
A9
),
A09210
, https://doi.org/10.1029/2008JA013129 (
2008
).
26.
Q.
Ma
,
W.
Li
,
L.
Chen
,
R. M.
Thorne
,
C. A.
Kletzing
,
W. S.
Kurth
,
G. B.
Hospodarsky
,
G. D.
Reeves
,
M. G.
Henderson
, and
H. E.
Spence
, “
The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere
,”
Geophys. Res. Lett.
41
(
18
),
6307
6313
, https://doi.org/10.1002/2014GL061414 (
2014
).
27.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
F.
Wei
,
Z.
Zhao
,
X.
Cao
,
S.
Fu
, and
X.
Gu
, “
Wave normal angle distribution of fast magnetosonic waves: a survey of van allen probes EMFISIS observations
,”
JGR. Space Phys.
124
(
7
),
5663
5674
(
2019
).
28.
Y.
Lou
,
X.
Cao
,
M.
Wu
,
B.
Ni
, and
T.
Zhang
, “
Parametric sensitivity of electron scattering effects by electrostatic electron cyclotron harmonic waves
,”
J. Geophys. Res. Space Phys
127
(
8
),
e2022JA030322
, https://doi.org/10.1029/2022JA030322 (
2022
).
29.
B.
Ni
,
X.
Cao
,
Y. Y.
Shprits
,
D.
Summers
,
X.
Gu
,
S.
Fu
, and
Y.
Lou
, “
Hot plasma effects on the cyclotron-resonant pitch-angle scattering rates of radiation belt electrons due to EMIC waves
,”
Geophys. Res. Lett.
45
(
1
),
21
30
, https://doi.org/10.1002/2017GL076028 (
2018
).
30.
J.
Bortnik
,
W.
Li
,
R. M.
Thorne
, and
V.
Angelopoulos
, “
A unified approach to inner magnetospheric state prediction
,”
JGR. Space Phys.
121
(
3
),
2423
2430
(
2016
).
31.
J.
Bortnik
,
X.
Chu
,
Q.
Ma
,
W.
Li
,
X.
Zhang
,
R. M.
Thorne
,
V.
Angelopoulos
,
R. E.
Denton
,
C. A.
Kletzing
,
G. B.
Hospodarsky
,
H. E.
Spence
,
G. D.
Reeves
,
S. G.
Kanekal
, and
D. N.
Baker
, “
Chapter 11 – Artificial neural networks for determining magnetospheric conditions
,” in
Mach. Learn. Tech. Space Weather
, edited by
E.
Camporeale
,
S.
Wing
, and
J. R.
Johnson
(
Elsevier
,
2018
), pp.
279
300
.
32.
X.
Chu
,
D.
Ma
,
J.
Bortnik
,
W. K.
Tobiska
,
A.
Cruz
,
S. D.
Bouwer
,
H.
Zhao
,
Q.
Ma
,
K.
Zhang
,
D. N.
Baker
,
X.
Li
,
H.
Spence
, and
G.
Reeves
, “
Relativistic electron model in the outer radiation belt using a neural network approach
,”
SPACE Weather. Int. J. Res. Appl
19
(
12
),
e2021SW002808
(
2021
).
33.
Y.
Chen
,
G. D.
Reeves
,
X.
Fu
, and
M.
Henderson
, “
PreMevE: New predictive model for megaelectron-volt electrons inside earth's outer radiation belt
,”
Space Weather
17
(
3
),
438
454
, https://doi.org/10.1029/2018SW002095 (
2019
).
34.
R.
Pires de Lima
,
Y.
Chen
, and
Y.
Lin
, “
Forecasting megaelectron-volt electrons inside earth's outer radiation belt: PreMevE 2.0 based on supervised machine learning algorithms
,”
Space Weather
18
,
1
23
, https://doi.org/10.1029/2019SW002399 (
2020
).
35.
S. G.
Claudepierre
and
T. P.
O'Brien
, “
Specifying high-altitude electrons using low-altitude LEO systems: The SHELLS model
,”
SPACE weather, Int. J. Res. Appl.
18
(
3
),
e2019SW002402
(
2020
).
36.
Z.
Zou
,
L.
Zhang
,
P.
Zuo
,
W.
San
,
Q.
Yuan
,
B.
Zhu
, and
J.
Hu
, “
Global prediction of sub-relativistic and relativistic electron fluxes in the geosynchronous orbit using artificial neural networks
,”
Phys. Fluids
36
(
12
),
126638
(
2024
).
37.
J. B.
Blake
,
P. A.
Carranza
,
S. G.
Claudepierre
,
J. H.
Clemmons
,
W. R.
Crain
,
Y.
Dotan
,
J. F.
Fennell
,
F. H.
Fuentes
,
R. M.
Galvan
,
J. S.
George
,
M. G.
Henderson
,
M.
Lalic
,
A. Y.
Lin
,
M. D.
Looper
,
D. J.
Mabry
,
J. E.
Mazur
,
B.
McCarthy
,
C. Q.
Nguyen
,
T. P.
O'Brien
,
M. A.
Perez
,
M. T.
Redding
,
J. L.
Roeder
,
D. J.
Salvaggio
,
G. A.
Sorensen
,
H. E.
Spence
,
S.
Yi
, and
M. P.
Zakrzewski
,
The magnetic electron ion spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft
,” (
2013
).
38.
D. N.
Baker
,
S. G.
Kanekal
,
V. C.
Hoxie
,
S.
Batiste
,
M.
Bolton
,
X.
Li
,
S. R.
Elkington
,
S.
Monk
,
R.
Reukauf
,
S.
Steg
,
J.
Westfall
,
C.
Belting
,
B.
Bolton
,
D.
Braun
,
B.
Cervelli
,
K.
Hubbell
,
M.
Kien
,
S.
Knappmiller
,
S.
Wade
,
B.
Lamprecht
,
K.
Stevens
,
J.
Wallace
,
A.
Yehle
,
H. E.
Spence
, and
R.
Friedel
, “
The relativistic electron-proton telescope (REPT) instrument on board the radiation belt storm probes (RBSP) spacecraft: Characterization of earth's radiation belt high-energy particle populations
,”
Space Sci. Rev.
179
(
1–4
),
337
381
(
2013
).
You do not currently have access to this content.