Three-dimensional numerical simulations with detailed chemistry were conducted on a rotating detonation ramjet engine (RDRE) fueled by ethylene. The study compared the basic structure, combustion characteristics, and performance of the rotating detonation wave (RDW) between isometric and divergent combustors with varying divergent angles. The results reveal that the RDW propagates with a slight inclination relative to the circumferential direction in the divergent combustor, whereas it propagates with a larger inclination in the isometric combustor. The resultant velocity perpendicular to the RDW in the divergent combustor exceeds that in the isometric combustor and remains consistent across different divergent angles. Furthermore, the inclination angle adapts to variations in incoming flow velocity. In the divergent combustor, the incoming flow accelerates, depressurizes, and exhibits a lower static temperature, significantly suppressing the parasitic combustion caused by backward pressure perturbations. Additionally, the divergent combustor minimizes non-ideal heat release in the recirculation zone near the ramp corner. Consequently, the proportion of ethylene consumption associated with high heat release rates in the divergent combustor is significantly higher than in the isometric combustor. The suppression of parasitic combustion also enhances RDW propagation stability in the divergent combustor. Notably, the total pressure loss in the divergent combustor is reduced by 7.25% at the outlet compared to the isometric combustor, attributed to the absence of a recirculation zone at the ramp corner. These findings provide valuable insights for the design and optimization of RDRE configurations.

1.
K.
Vokurka
, “
Experimental study of detonating gas bubble oscillations using a shock tube
,”
Czech. J. Phys.
43
(
11
),
1071
1081
(
1993
).
2.
P.
Wolański
, “
Detonative propulsion
,”
Proc. Combust. Inst.
34
,
125
158
(
2013
).
3.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonations
,”
J. Propul. Power
22
,
1204
1216
(
2006
).
4.
C.
Wang
,
W.
Liu
,
S.
Liu
et al, “
Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen
,”
Int. J. Hydrogen Energy
40
(
30
),
9530
9538
(
2015
).
5.
C.
Wang
,
W.
Liu
,
S.
Liu
et al, “
Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor
,”
Exp. Therm. Fluid Sci.
66
,
269
278
(
2015
).
6.
S.
Liu
,
W.
Liu
,
Y.
Wang
et al, “
Free jet test of continuous rotating detonation ramjet engine
,” AIAA Paper No. 2017-2282,
2017
.
7.
S.
Frolov
,
V.
Zvegintsev
,
V.
Ivanov
et al, “
Wind tunnel testing of a detonation ramjet model at approach air stream mach number 5.7 and a stagnation temperature of 1500 k
,”
Dokl. Phys. Chem.
481
,
100
(
2018
).
8.
V. S.
Ivanov
,
S. M.
Frolov
,
A. E.
Zangiev
et al, “
Updated conceptual design of hydrogen/ethylene fueled detonation ramjet: Test fires at Mach 1.5, 2.0, and 2.5
,”
Aerosp. Sci. Technol.
126
,
107602
(
2022
).
9.
G.
Wang
,
W.
Liu
,
S.
Liu
et al, “
Experimental verification of cylindrical air-breathing continuous rotating detonation engine fueled by non-premixed ethylene
,”
Acta Astronaut.
189
,
722
732
(
2021
).
10.
H.
Meng
,
Q.
Xiao
,
W.
Feng
et al, “
Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor
,”
Aerosp. Sci. Technol.
122
,
107407
(
2022
).
11.
X.
Yang
,
F.
Song
,
Y.
Wu
et al, “
Suppression of pressure feedback of the rotating detonation combustor by a Tesla inlet configuration
,”
Appl. Therm. Eng.
216
,
119123
(
2022
).
12.
V.
Raman
,
S.
Prakash
, and
M.
Gamba
, “
Nonidealities in rotating detonation engines
,”
Annu. Rev. Fluid Mech.
55
,
639
674
(
2023
).
13.
H.
Peng
,
W.
Liu
,
S.
Liu
et al, “
Effects of cavity location on ethylene-air continuous rotating detonation in a cavity-based annular combustor
,”
Combust. Sci. Technol.
193
(
16
),
2761
2782
(
2021
).
14.
H.
Peng
,
W.
Liu
,
S.
Liu
et al, “
Enhancement of ethylene-air continuous rotating detonation in the cavity-based annular combustor
,”
Aerosp. Sci. Technol.
115
,
106842
(
2021
).
15.
S.
Liu
,
H.
Peng
,
W.
Liu
et al, “
Effects of cavity depth on the ethylene-air continuous rotating detonation
,”
Acta Astronaut.
166
,
1
10
(
2020
).
16.
H.
Teng
,
L.
Zhou
,
P.
Yang
et al, “
Numerical investigation of wavelet features in rotating detonations with a two-step induction-reaction model
,”
Int. J. Hydrogen Energy
45
(
7
),
4991
5001
(
2020
).
17.
C.
Yan
,
H.
Teng
, and
H. D.
Ng
, “
Effects of slot injection on detonation wavelet characteristics in a rotating detonation engine
,”
Acta Astronaut.
182
,
274
285
(
2021
).
18.
A. V.
Dubrovskii
,
V. S.
Ivanov
,
A. E.
Zangiev
et al, “
Three-dimensional numerical simulation of the characteristics of a ramjet power plant with a continuous-detonation combustor in supersonic flight
,”
Russ. J. Phys. Chem. B
10
,
469
482
(
2016
).
19.
K.
Nakata
,
K.
Ishihara
,
K.
Goto
et al, “
Experimental investigation of inner flow of a throatless divergent rotating detonation engine
,”
Proc. Combust. Inst.
39
,
3073
3082
(
2023
).
20.
R. T.
Milligan
,
J.
Liu
,
C.-J.
Tam
et al, “
Dual-mode scramjet combustor: Numerical sensitivity and evaluation of experiments
,” AIAA Paper No. 2012-0947,
2012
.
21.
R. T.
Milligan
,
T.
Mathur
,
J. M.
Wolff
et al, “
Dual-mode scramjet combustor: Numerical analysis of two flowpaths
,”
J. Propul. Power
27
(
6
),
1317
1320
(
2011
).
22.
K.
Wu
,
S.
Zhang
,
M.
Luan
et al, “
Effects of flow-field structures on the stability of rotating detonation ramjet engine
,”
Acta Astronaut.
168
,
174
181
(
2020
).
23.
M.
Zhao
,
H.
Qiu
,
X.
He
et al, “
Numerical study on the flow characteristics and stability in the isolator of rotating detonation ramjet engine by different combustion modes and structure parameters
,”
Aerosp. Sci. Technol.
147
,
108982
(
2024
).
24.
Q.
Wu
,
Z.
Lin
,
X.
Huang
et al, “
Flow characteristics and stability of induced shock waves in the isolator of rotating detonation ramjet under flight Mach number 2.5 conditions
,”
Aerosp. Sci. Technol.
133
,
108092
(
2023
).
25.
W.
Fan
,
S.
Liu
,
S.
Zhong
et al, “
Characteristics of ethylene-air continuous rotating detonation in the cavity-based annular combustor
,”
Phys. Fluids
35
(
4
),
045142
(
2023
).
26.
See https://openfoam.org/release/8 for “
The Open Source CFD Toolbox
.”
27.
G.
Vignat
,
D.
Brouzet
,
M.
Bonanni
, and
M.
Ihme
, “
Analysis of weak secondary waves in a rotating detonation engine using large-eddy simulation and wavenumber-domain filtering
,”
Combust. Flame
263
,
113387
(
2024
).
28.
P.
Du
,
R.
Xue
,
Z.
Yang
et al, “
Numerical simulation on the shock wave focusing detonation process in the semicircle reflector
,”
Phys. Fluids
35
(
2
),
026107
(
2023
).
29.
M.
Yu
and
S.
Miao
, “
Initiation characteristics of wedge-induced oblique detonation waves in turbulence flows
,”
Acta Astronaut.
147
,
195
204
(
2018
).
30.
W.
Fan
,
H.
Peng
,
S.
Liu
et al, “
Verification and characteristics of continuous rotating detonation waves in a novel rounded-rectangle hollow combustor
,”
Phys. Fluids
36
(
6
),
066117
(
2024
).
31.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
32.
C. J.
Greenshields
,
H. G.
Weller
,
L.
Gasparini
et al, “
Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows
,”
Int. J. Numer. Methods Fluids
63
(
1
),
1
21
(
2010
).
33.
C.
Si
,
M.
Zhao
, and
Y.
Zhu
, “
On the interaction between a detonation wave and an inert gas plug: A numerical investigation
,”
Phys. Fluids
35
(
12
),
126104
(
2023
).
34.
M.
Zhao
,
M. J.
Cleary
, and
H.
Zhang
, “
Combustion mode and wave multiplicity in rotating detonative combustion with separate reactant injection
,”
Combust. Flame
225
,
291
304
(
2021
).
35.
W.
Wang
,
Z.
Hu
, and
P.
Zhang
, “
Computational investigation on the formation of liquid-fueled oblique detonation waves
,”
Combust. Flame
271
,
113839
(
2025
).
36.
P. A. N.
Niklas
,
Complex Chemistry Modeling of Diesel Spray Combustion
(
Chalmers University of Technology
,
Sweden
,
2001
), Vol.
18
.
37.
B.
Varatharajan
and
F. A.
Williams
, “
Ethylene ignition and detonation chemistry, Part 2: Ignition histories and reduced mechanisms
,”
J. Propul. Power
18
,
352
362
(
2002
).
38.
J. M.
Austin
and
J. E.
Shepherd
, “
Detonation in hydrocarbon fuel blends
,”
Combust. Flame
132
,
73
90
(
2003
).
You do not currently have access to this content.