When utilizing high-speed gas jet for the propulsion of underwater vehicles, complex flow phenomena such as ventilated cavitation, bubble expansion, and contraction are formed, along with corresponding complex thrust characteristics. In this paper, an experimental study was conducted on the thrust and flow field evolution characteristics of vector-deflected high-speed gas jets produced by a Laval nozzle under co-flow conditions. Under the experimental conditions of this study, the venting position of the pulsating foam tail cavity shifts with the increase in the nozzle vector angle θ. The axial component of thrust exhibits a noticeable loss as the vector angle θ increases, and its oscillation is correlated with the pressure pulsation of the tail cavity. The nozzle thrust vector angle operates within an optimal range, with the lateral force peaking at θ = 6°. Beyond this angle, the lateral force diminishes as θ progresses further. The amplitude of the lateral force is related to the vent channel, with unobstructed channels corresponding to the peak values of the lateral force. This paper can provide a reference for the design of vector jet propulsion systems for underwater vehicles. The unique phenomena and patterns of underwater vector jets revealed through experiments lay the foundation and offer insights for more in-depth mechanistic studies.

1.
Y.
Shi
,
J.
Ren
,
S.
Gao
,
G.
Pan
, and
J.
Lu
, “
Simulation research on the outlet cavity features in the underwater launching process
,”
Ocean Eng.
267
,
113278
(
2023
).
2.
J.
Lu
,
C.
Wang
,
W.
Song
,
Y.
Wei
,
D.
Yu
, and
Y.
Li
, “
Experimental investigation on interference characteristics of projectiles launched successively underwater
,”
Ocean Eng.
250
,
110824
(
2022
).
3.
Y.
Tang
and
S.
Li
, “
The mechanism for the quasi-back-attack phenomenon of gas jets submerged in water
,”
Int. J. Aeronaut. Space Sci.
20
,
165
(
2019
).
4.
K.
Chen
and
H. J.
Richter
, “
Instability analysis of the transition from bubbling to jetting in a gas injected into a liquid
,”
Int. J. Multiphase Flow
23
,
699
(
1997
).
5.
J.
Liu
,
S.
Cong
,
Y.
Song
,
S.
Chen
, and
D.
Wu
, “
Flow structure and acoustics of underwater imperfectly expanded supersonic gas jets
,”
Shock Waves
32
,
283
(
2022
).
6.
L.
Sopegno
,
P.
Livreri
,
M.
Stefanovic
, and
K. P.
Valavanis
, “
Thrust vector controller comparison for a finless rocket
,”
Machines
11
,
394
(
2023
).
7.
X.
Li
,
F.
Xue
,
H.
Zhang
,
Z.
Luo
,
X.
Zong
, and
B.
Bai
, “
Flow regimes of the reactive submerged gas jet from the Laval nozzle into liquid
,”
Appl. Therm. Eng.
256
,
124102
(
2024
).
8.
M.
Uchida
,
S.
Someya
,
K.
Okamoto
, and
H.
Ohshima
, “
Preliminary experiments with an underexpanded gas jet into water
,” in
Heat Transfer Summer Conference
(
2009
).
9.
C.
Huang
,
J.
Dang
,
K.
Luo
,
D.
Li
, and
Z.
Wang
, “
Influence of Ramjets' water inflow on supercavity shape and cavitator drag characteristic
,”
J. Mar. Sci. Appl.
16
,
166
(
2017
).
10.
X.
Zhang
,
S.
Li
,
B.
Yang
, and
N.
Wang
, “
Flow structures of over-expanded supersonic gaseous jets for deep-water propulsion
,”
Ocean Eng.
213
,
107611
(
2020
).
11.
V.
Emelyanov
,
K.
Volkov
, and
M.
Yakovchuk
, “
Outflow of a supersonic overexpanded air jet into a water
,”
Eur. J. Mech. B Fluids
105
,
1
(
2024
).
12.
H.
Shi
,
B.
Wang
, and
Z.
Dai
, “
Research on the mechanics of underwater supersonic gas jets
,”
Sci. China Phys. Mech. Astron.
53
,
527
(
2010
).
13.
H.
Shi
,
Q.
Guo
,
C.
Wang
,
R.
Dong
,
L.
Zhang
,
H.
Jia
,
X.
Wang
, and
B.
Wang
, “
Oscillation flow induced by underwater supersonic gas jets
,”
Shock Waves
20
,
347
(
2010
).
14.
J.
Tang
,
N.
Wang
, and
W.
Shyy
, “
Flow structures of gaseous jets injected into water for underwater propulsion
,”
Acta Mech. Sin.
27
,
461
(
2011
).
15.
A.
Jana
,
L.
Hoskoti
, and
M. M.
Sucheendran
, “
A numerical study of the flow field driven by a submerged, high-speed, gaseous jet
,”
J. Fluids Eng.
144
,
111208
(
2022
).
16.
A.
Jana
,
L.
Hoskoti
, and
M. M.
Sucheendran
, “
An analysis of flow structures of underwater supersonic gas jets: A numerical study
,”
Shock Waves
33
,
429
(
2023
).
17.
H.
Xu
,
C.
Wang
,
Y.
Wei
,
W.
Cao
, and
W.
Wang
, “
Analysis of the effect of underwater supersonic gas jet on the ventilated supercavitation flow
,”
Ocean Eng.
299
,
117278
(
2024
).
18.
H.
Xu
,
C.
Wang
,
H.-Z.
Lu
, and
W.-H.
Huang
, “
Experimental study on submerged supersonic gaseous jet induced tail cavity
,”
Acta Phys. Sin.
67
,
014703
(
2018
).
19.
Q.
Yang
,
H.
Xu
,
Y.
Li
,
W.
Zhang
,
Y.
Wei
, and
C.
Wang
, “
Topology and cavitation number characteristics of the gaseous jet-induced tail cavity under co-flow
,”
Phys. Fluids
34
,
013303
(
2022
).
20.
Q.
Yang
,
Y.
Wang
,
Y.
Wei
,
C.
Wang
, and
S.
Cheng
, “
Experimental study on tail cavity structure and pressure characteristics of underwater vehicle with tail jet
,”
Ocean Eng.
281
,
114843
(
2023
).
21.
G.
Wang
,
C.
Wang
,
J.
Zhao
,
H.
Xu
, and
W.
Wang
, “
Experimental study on the coupled flow field and thrust characteristics of tail cavity and jet
,”
Phys. Fluids
36
,
055135
(
2024
).
22.
G.
Wang
,
W.
Wang
,
T.
Zhang
, and
C.
Wang
, “
Experimental study of jet and cavity coupling under vertical motion of underwater vehicle
,”
Appl. Ocean Res.
150
,
104124
(
2024
).
23.
S.
Afridi
,
T. A.
Khan
,
S. I. A.
Shah
,
T. A.
Shams
,
K.
Mohiuddin
, and
D. J.
Kukulka
, “
Techniques of fluidic thrust vectoring in jet engine nozzles: a review
,”
Energies
16
,
5721
(
2023
).
24.
Q.
Xu
,
X.
Quan
,
H.
Wei
, and
W.
Bao
, “
Research progress and prospects of underwater thrust vector control technology
,”
J. Ordnance Equip. Eng.
43
,
27
(
2021
).
25.
S.
Chi
,
Y.
Gu
,
D.
Gong
, and
L.
Li
, “
Investigation of thrust vector angle control law based on micro-turbojet engine
,”
AIP Adv.
12
,
085224
(
2022
).
26.
T.
Shakouchi
and
S.
Fukushima
, “
Fluidic thrust, propulsion, vector control of supersonic jets by flow entrainment and the coanda effect
,”
Energies
15
,
8513
(
2022
).
27.
M. R.
Soufivand
,
M.
Hojaji
, and
M. H.
Razavi Dehkordi
, “
Protuberance placement mastery: Shock wave control integration with Coanda effect to thrust vectoring on a sonic jet
,”
Eng. Anal. Boundary Elem.
166
,
105769
(
2024
).
28.
W.
Liu
,
D.
Li
,
Q.
Cai
,
Z.
Zhang
,
Y.
Yuan
, and
J.
Liu
, “
Simulation study on flow field and control characteristics of swing nozzle during underwater operation
,”
J. Propul. Technol.
43
,
210701
(
2022
).
29.
X.
Quan
,
S.
Cheng
,
J.
Qin
, and
F.
Chen
, “
Multiphase flow field simulation of underwater thrust vector control based on gimbaled nozzle
,”
J. Ship Mech.
24
,
1006
(
2020
).
30.
M.
Fronzeo
and
M. P.
Kinzel
, “
An investigation of compressible gas jets submerged into water
,” in
46th AIAA Fluid Dynamics Conference
(
2016
).
31.
C.
Weiland
and
P. P.
Vlachos
, “
Round gas jets submerged in water
,”
Int. J. Multiphase Flow
48
,
46
(
2013
).
32.
C.
Weiland
, “
Characteristics of the high speed gas-liquid interface
,” (
2009
).
33.
Q.
Yang
,
C.
Wang
,
Y.
Wei
,
Y.
Wang
,
D.
Zhang
, and
X.
Hu
, “
Experimental study on the collapse of tail cavity induced by underwater ventilation
,”
Phys. Fluids
34
,
112111
(
2022
).
34.
X.
Lian
,
H.
Xu
,
S.
Zhang
, and
T.
Sun
, “
A joint experimental study of the flow evolution and thrust characteristics of underwater supersonic gas jets
,”
Ocean Eng.
304
,
117862
(
2024
).
35.
D.
Mishra
,
Fundamentals of Rocket Propulsion
(
CRC Press
,
2017
).
36.
S.
Zhang
,
H.
Xu
,
T.
Sun
, and
X.
Lian
, “
Experimental investigation on flow characteristics and instability of submerged high-speed gaseous jets under co-flow
,”
Ocean Eng.
310
,
118682
(
2024
).
37.
Z.
Li
,
Handbook of Wind Tunnel Test
(Aviation Industry Press,
Beijing
,
2015
).
38.
Z.
Ren
,
X.
Wang
,
S.
Cheng
,
X.
Quan
, and
Z.
Yu
, “
Numerical study on the pulsation characteristics of tail cavities under vertical launching conditions
,”
Ocean Eng.
305
,
117948
(
2024
).
39.
S.
Cheng
,
X.
Quan
,
Y.
Sha
,
Q.
Yang
,
C.
Wang
, and
Y.
Xu
, “
Experimental investigation of the underwater ventilated tail cavity at different angles of attack
,”
Ocean Eng.
261
,
111916
(
2022
).
40.
X.
Tan
,
Y.
Shan
,
J.
Zhang
, and
H.
Wang
, “
Numerical investigation of the aerodynamic and infrared radiation characteristics of spherical convergent flap nozzles
,”
J. Aerosp. Eng.
29
,
04016031
(
2016
).
41.
X.
Zhang
,
S.
Li
,
B.
Yang
,
N.
Wang
,
Q.
Zheng
,
Y.
Wang
, and
Y.
Tong
, “
Flow structures of vertical gaseous jets and effects of thrust of underwater solid rocket motor
,”
J. Propul. Technol.
42
,
961
(
2021
).
42.
M. G.
Kendall
, “
Rank correlation methods
,” (
1949
).
43.
L.
Huang
and
Z.
Chen
, “
Effect of technological parameters on hydrodynamic performance of ultra-high-pressure water-jet nozzle
,”
Appl. Ocean Res.
129
,
103410
(
2022
).
44.
X.
Ma
,
Z.
Tang
, and
N.
Jiang
, “
Investigation of spanwise coherent structures in turbulent backward-facing step flow by time-resolved PIV
,”
Exp. Therm. Fluid Sci.
132
,
110569
(
2022
).
You do not currently have access to this content.