We investigate the unconstrained minimum energy required for vehicles to move through turbulence. We restrict our study to vehicles that interact with their environment through thrust, weight, and drag forces, such as rotorcraft or submersibles. For such vehicles, theory predicts an optimum ratio between vehicle velocity and a characteristic velocity of the turbulence. The energy required for transit can be substantially smaller than what is required to move through quiescent fluid. We describe a simple picture for how a flight trajectory could preferentially put vehicles in tailwinds rather than headwinds, predicated on the organization of turbulence around vortices. This leads to an analytical parameter-free lower bound on the energy required to traverse a turbulent flow. We test this bound by computationally optimizing trajectories in Kraichnan's model of turbulence and find that the energy required by point-models of vehicles is slightly larger than but close to our bound. Finally, we predict the existence of an optimum level of turbulence for which power is minimized, so that turbulence can be both too strong and too weak to be useful. This work strengthens previous findings that environmental turbulence can always reduce energy use. Thus, favorable trajectories are available to maneuverable vehicles if they have sufficient knowledge of the flow and computational resources for path planning.

1.
K. R.
Sreenivasan
and
R. A.
Antonia
, “
The phenomenology of small-scale turbulence
,”
Annu. Rev. Fluid Mech.
29
(
1
),
435
472
(
1997
).
2.
G. L.
Eyink
, “
Turbulence noise
,”
J. Stat. Phys.
83
,
955
1019
(
1996
).
3.
S. A.
Bollt
and
G. P.
Bewley
, “
How to extract energy from turbulence in flight by fast tracking
,”
J. Fluid Mech.
921
,
A18
(
2021
).
4.
R. J.
Wood
, “
The first takeoff of a biologically inspired at-scale robotic insect
,”
IEEE Trans. Rob.
24
(
2
),
341
347
(
2008
).
5.
C. H.
Gibson
, “
Turbulence in the ocean, atmosphere, galaxy, and universe
,”
Appl. Mech. Rev.
49
(
5
),
299
315
(
1996
).
6.
B.
Garau
,
A.
Alvarez
, and
G.
Oliver
, “
AUV navigation through turbulent ocean environments supported by onboard H-ADCP
,” In
Proceedings of the
2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006
(
IEEE
,
2006
), pp.
3556
3561
.
7.
G.
Reddy
,
J.
Wong-Ng
,
A.
Celani
,
T. J.
Sejnowski
, and
M.
Vergassola
, “
Glider soaring via reinforcement learning in the field
,”
Nature
562
(
7726
),
236
239
(
2018
).
8.
H.
Yang
,
D.
Jing
,
V.
Tarokh
,
G.
Bewley
, and
S.
Ferrari
, “
Flow parameter estimation based on on-board measurements of air vehicle traversing turbulent flows
,” In
AIAA Scitech 2021 Forum
(
ARC
,
2021
), p.
0380
.
9.
H.
Yang
,
G. P.
Bewley
, and
S.
Ferrari
, “
A fast-tracking-particle-inspired flow-aided control approach for air vehicles in turbulent flow
,”
Biomimetics
7
(
4
),
192
(
2022
).
10.
K.
Krishna
,
Z.
Song
, and
S. L.
Brunton
, “
Finite-horizon, energy-efficient trajectories in unsteady flows
,”
Proc. Math. Phys. Eng. Sci.
478
(
2258
),
20210255
(
2022
).
11.
R. H.
Kraichnan
, “
Diffusion by a random velocity field
,”
Phys. Fluids
13
(
1
),
22
31
(
1970
).
12.
M. R.
Maxey
, “
The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields
,”
J. Fluid Mech.
174
,
441
465
(
1987
).
13.
R. H.
Kraichnan
, “
Anomalous scaling of a randomly advected passive scalar
,”
Phys. Rev. Lett.
72
(
7
),
1016
(
1994
).
14.
G. H.
Good
,
P. J.
Ireland
,
G. P.
Bewley
,
E.
Bodenschatz
,
L. R.
Collins
, and
Z.
Warhaft
, “
Settling regimes of inertial particles in isotropic turbulence
,”
J. Fluid Mech.
759
,
R3
(
2014
).
15.
W.
Johnson
,
Helicopter Theory
(
Courier Corporation
,
2012
).
16.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
(
4
),
883
889
(
1983
).
17.
M.
Mathur
,
G.
Haller
,
T.
Peacock
,
J. E.
Ruppert-Felsot
, and
H. L.
Swinney
, “
Uncovering the Lagrangian skeleton of turbulence
,”
Phys. Rev. Lett.
98
(
14
),
144502
(
2007
).
18.
E. M.
Bollt
and
J. D.
Meiss
, “
Controlling chaotic transport through recurrence
,”
Phys. D
81
(
3
),
280
294
(
1995
).
19.
G.
Gómez
,
W. S.
Koon
,
M. W.
Lo
,
J. E.
Marsden
,
J.
Masedemount
, and
S. D.
Ross
,
2001
. “
Invariant manifolds, the spatial three-body problem and space mission design
,” in
AAS/AIAA Astrodynamics Specialist Conference
.
20.
T.
Inanc
,
S. C.
Shadden
, and
J. E.
Marsden
, “
Optimal trajectory generation in ocean flows
,” in
Proceedings of the 2005, American Control Conference
(
IEEE
,
2005
), pp.
674
679
.
21.
L. P.
Wang
and
M. R.
Maxey
, “
Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence
,”
J. Fluid Mech.
256
,
27
68
(
1993
).
22.
A.
Aliseda
,
A.
Cartellier
,
F.
Hainaux
, and
J. C.
Lasheras
, “
Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence
,”
J. Fluid Mech.
468
,
77
105
(
2002
).
23.
J.
Solberg
, “
Susceptibility of quadcopter flight to turbulence
,” Ph.D. dissertation (
Cornell University
,
2018
).
24.
K. M.
Laurent
,
B.
Fogg
,
T.
Ginsburg
,
C.
Halverson
,
M. J.
Lanzone
,
T. A.
Miller
,
D. W.
Winkler
, and
G. P.
Bewley
, “
Turbulence explains the accelerations of an eagle in natural flight
,”
Proc. Natl. Acad. Sci. USA
118
(
23
),
e2102588118
(
2021
).
25.
D.
Bandak
,
A. A.
Mailybaev
,
G. L.
Eyink
, and
N.
Goldenfeld
, “
Spontaneous stochasticity amplifies even thermal noise to the largest scales of turbulence in a few eddy turnover times
,”
Phys. Rev. Lett.
132
(
10
),
104002
(
2024
).
You do not currently have access to this content.